NMVe SSD Fedora 吞吐量测试过高

NMVe SSD Fedora 吞吐量测试过高

我正在测试使用 NVMe 协议的三星 950 Pro SSD 卡的吞吐量。我当前的测试方法是在分区上挂载文件系统,并将大小为X字节的文件写入文件系统。通过记录执行此操作所需的时间,可以计算字节/秒。

在我的测试中,我有一个 while 循环,它将以可变块大小写入 X 字节,一次一个块,由更高级别的 for 循环指定。除此之外,我还有另一个循环,它将并行运行 N 个应用程序,每个应用程序写入 SSD 的不同分区。

目前,我看到的读取和写入速度略快于三星 950 Pro 数据表指定的理论最大传输速度。三星指定 950 Pro 的最大顺序写入速度为 1.5 GB/s,最大顺序读取速度为 2.5 GB/s。

https://www.samsung.com/us/computing/memory-storage/solid-state-drives/ssd-950-pro-nvme-512gb-mz-v5p512bw/#specs

以下是 bash 脚本的主要功能,该脚本循环遍历要运行的应用程序数量和块大小:

appInstances=1
while [ $appInstances -le 4 ]
do
    for blocksize in 4096 32768 131072 524288 1048576 67108864 268435456 1073741824
    do
       # Run the test
       datetime
       echo "[$datetime_v]: Test blocksize: $blocksize appInstances: $appInstances"
       run_single_perf_test $blocksize

    done

    appInstances=`expr $appInstances \* 2`

done
exit 0

这是 run_perf_test 的写入部分。这部分之后还有一个读取部分,其中包括写入吞吐速度测试。在测试之间,我卸载了 SSD 的所有分区并重新安装它们,以允许所有 NVMe 事务完成并防止写入操作的任何缓存影响读取操作的吞吐量测量。

instCnt=1
childpids=""
while [ $instCnt -le $appInstances ]
do
fsrw -w $blocksize /fsmnt/fs${instCnt}/usernumber1/j.j &

# Save the process ID
childpids="$childpids $!"

# Increment the instace count.
instCnt=`expr $instCnt + 1`
done

fsrw 是一个 C++ 应用程序,它基于第一个参数“-r”或“-w”、第二个参数(块大小)和第三个参数(SSD 分区上的文件名)构建一个字符串并尝试打开 SSD 分区上的文件并将字符串写入其中。这是 write 函数的实现,当提供“-w”作为第一个参数时调用该函数。

/*! \fn perform_writeop()
 *  \brief The function returns true when the write operation completes successfully. 
 *
 *  The function will run until the read is complete or a 35 second timeout is reached.
 *  It will record the time before the write begins, then also record the time afterward.
 *  If the timeout is reached this should be about 35 seconds
 */
bool perform_writeop ()
{
    // File descriptor.
    int32_t fd = -1;

    // Function status.
    bool status = false;

    // Zero writes
    int zero_writes = 0;

    // Buffer fill index.
    int32_t bfidx = 0;

    // Character value.
    int8_t cv = 33;

    // Fill the buffer with printable characters.
    for (; bfidx < blocksize; bfidx++, cv++)
    {
        // Verify the character value is in range.
        if (cv >= 127)
        {
            cv = 33;
        }
        else
        {
            // Add to the buffer.
            buf[bfidx] = cv;
        }
    }

    // Open the file.
    fd = open (fname.c_str (), O_WRONLY | O_CREAT, 0660);

    // Verify the file has been opened.
    if (fd == -1)
    {
        cout << get_datetime_string() << "Write open of " << fname 
        << " failed.  Errno: " << errno << endl;
    }
    else
    {
        // Total bytes written.
        uint64_t written = 0;

        // Notify the start of the test.
        cout << get_datetime_string() << "Write test started" << endl;

        // Elapsed time.
        struct timeval tv = { 0 };
        get_elapsed_time (&tv);
        struct timeval write_tv = tv;

        // Run until it is time for the test to stop.
        while (written < READ_LIMIT && zero_writes < 10)
        {
            ssize_t writesize = write (fd, &buf[0], blocksize);
            if (writesize == -1)
            {
                cout << get_datetime_string << "Write failure.  Errno: " << errno << endl;
                zero_writes = 10;
            }
            else if (0 == writesize)
            {
                cout << get_datetime_string() << "Zero bytes written" << endl;
                zero_writes++;
            }
            else
            {
                written += writesize;
            }
        }

    string flush_command = "nvme flush /dev/nvme0n1p";
    flush_command += fname[9];
    system(flush_command.c_str());


    // Get the elapsed time.
    get_elapsed_time (&write_tv);

    // Report the number of bytes written.
    cout << get_datetime_string() << "Write " << written << " bytes in "
     << write_tv.tv_sec << "." << write_tv.tv_usec
     << " seconds" << endl;

    // Close the file.
    close (fd);

    // Get the elapsed time.
    get_elapsed_time (&tv);

    // Report the number of bytes read.
    cout << get_datetime_string() << "Write closed.  " << written 
    << " Bytes written in " << tv.tv_sec << "." << tv.tv_usec 
    << " seconds" << endl;

    // Report the number of bytes per second.
    cout << get_datetime_string() << "Bytes per second " 
    << bytes_per_second (&tv, written) << endl;

    // Report the cache flush time.
    struct timeval flush_tv = { 0 };
    timersub (&tv, &write_tv, &flush_tv);
    cout << get_datetime_string() << "System cache flush completed in " 
    << flush_tv.tv_sec << "." << flush_tv.tv_usec << "seconds" << endl;

    // Set the function return status when all write operations have
    // been successful.
    if (zero_writes < 10)
    {
      status = true;
    }
  }
  return status;
}

我得到的数据看起来像这样 在此输入图像描述

这些数字接近三星 950 Pro 的最大理论吞吐量,但有些数字太高,这让我很困扰。为什么我得到的数字可能高于 Samsung 950 Pro 的理论最大吞吐量?

相关内容