因此,我只是尝试编辑某人在 tabularx 中制作的表格,因为我喜欢这种风格,但我不知道我到底在做什么,因此我遇到了一个问题。在下面的代码中,条目“setup”后面有一个很大的空格,我希望一切都很好并且对称,但是这个空格使它非常不对称。有没有办法删除这个空格?
\documentclass{article}
\usepackage{array}
\usepackage{booktabs}
\usepackage{ragged2e}
\usepackage{tabularx}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\newcolumntype{Y}{>{\RaggedRight\arraybackslash}X}
\begin{document}
\noindent
\edef\TabularRowHeight{\the\dimexpr-\arraystretch\baselineskip}
\begin{tabularx}{\textwidth}{YY}
\toprule
Alice & Bob \\
\midrule
\emph{Setup}\\
\cmidrule(lr){1-1}
Alice \& Bob select a prime $p$ and a generator $g$ for the finite field $\mathbb{F}_p$
&\\
&\emph{Private Computation}\\
\cmidrule(lr){2-2}
& Bob randomly selects $b \in \mathbb{F}_p$ and then computes the following:
$B \equiv g^b \mod p$ once computed Bob sends Alice $B$
\\[\TabularRowHeight] & \\
& \emph{Key Computation}\\
\cmidrule(lr){2-2}
& Bob who now has $A$, calculates the following:$A^b \equiv (g^a)^b \equiv g^{ab} \mod p$
\\
\emph{Private Computation}\\
\cmidrule(lr){1-1}
Alice randomly selects $a \in \mathbb{F}_p$ and then computes the following:
$A \equiv g^a \mod p$ once computed Alice sends Bob $A$ & \\ \pagebreak
\emph{Key Computation}\\
\cmidrule(lr){1-1}
Alice who now has $B$, calculates the following:$B^a \equiv (g^b)^a \equiv g^{ab} \mod p$ & \\
\bottomrule
\end{tabularx}
\end{document}
答案1
我认为从您展示的表格中删除交替布局没有什么意义,但可以尝试一下
\documentclass{article}
\usepackage{array}
\usepackage{booktabs}
\usepackage{ragged2e}
\usepackage{tabularx}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\newcolumntype{Y}{>{\RaggedRight\arraybackslash}X}
\begin{document}
\emph{Setup}: Alice \& Bob select a prime $p$ and a generator $g$ for the finite field $\mathbb{F}_p$
\begin{tabularx}{\textwidth}{@{}YY@{}}
\toprule
Alice & Bob \\
\midrule
\addlinespace[1.2em]
\emph{Private Computation}:&\\ \addlinespace
% \cmidrule(r){1-1}\cmidrule(l){2-2}
Alice randomly selects $a \in \mathbb{F}_p$ and then computes the following:
$A \equiv g^a \mod p$ once computed Alice sends Bob $A$& Bob randomly selects $b \in \mathbb{F}_p$ and then computes the following:
$B \equiv g^b \mod p$ once computed Bob sends Alice $B$\\\addlinespace[1.2em]
\emph{Key Computation}: &\\ \addlinespace
% \cmidrule(r){1-1}\cmidrule(l){2-2}
Alice who now has $B$, calculates the following:$B^a \equiv (g^b)^a \equiv g^{ab} \mod p$ & Bob who now has $A$, calculates the following:$A^b \equiv (g^a)^b \equiv g^{ab} \mod p$
\\
\bottomrule
\end{tabularx}
\end{document}
相反,我更喜欢 3 列布局:
\documentclass{article}
\usepackage{array}
\usepackage{booktabs}
\usepackage{ragged2e}
\usepackage{tabularx}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\newcolumntype{Y}{>{\RaggedRight\arraybackslash}X}
\begin{document}
\emph{Setup}: Alice \& Bob select a prime $p$ and a generator $g$ for the finite field $\mathbb{F}_p$
\begin{tabularx}{\textwidth}{@{}>{\RaggedRight\arraybackslash}p{2.2cm}YY@{}}
\toprule
& Alice & Bob \\
\midrule
\emph{Private \linebreak Computation} & %
Alice randomly selects $a \in \mathbb{F}_p$ and then computes the following:
$A \equiv g^a \mod p$ once computed Alice sends Bob $A$& Bob randomly selects $b \in \mathbb{F}_p$ and then computes the following:
$B \equiv g^b \mod p$ once computed Bob sends Alice $B$\\\addlinespace
\emph{Key \linebreak Computation} & Alice who now has $B$, calculates the following:$B^a \equiv (g^b)^a \equiv g^{ab} \mod p$ & Bob who now has $A$, calculates the following:$A^b \equiv (g^a)^b \equiv g^{ab} \mod p$
\\
\bottomrule
\end{tabularx}
\end{document}