我正在编写一个Python脚本,它循环N个.SDF填充,使用glob创建它们的列表,对每个文件执行一些计算,然后以pandas数据文件格式存储这些信息。假设我计算每个文件的 4 个不同属性,对于 1000 个填充,预期输出应以 5 列和 1000 行的数据文件格式进行汇总。这是代码示例:
# make a list of all .sdf filles present in data folder:
dirlist = [os.path.basename(p) for p in glob.glob('data' + '/*.sdf')]
# create empty data file with 5 columns:
# name of the file, value of variable p, value of ac, value of don, value of wt
df = pd.DataFrame(columns=["key", "p", "ac", "don", "wt"])
# for each sdf file get its name and calculate 4 different properties: p, ac, don, wt
for sdf in dirlist:
sdf_name=sdf.rsplit( ".", 1 )[ 0 ]
# set a name of the file
key = f'{sdf_name}'
mol = open(sdf,'rb')
# --- do some specific calculations --
p = MolLogP(mol) # coeff conc-perm
ac = CalcNumLipinskiHBA(mol)#
don = CalcNumLipinskiHBD(mol)
wt = MolWt(mol)
# add one line to DF in the following order : ["key", "p", "ac", "don", "wt"]
df[key] = [p, ac, don, wt]
问题出在脚本的最后一行,需要将所有计算汇总在一行中,并将其与处理后的文件一起附加到 DF 中。最终,对于 1000 个已处理的 SDF 填充,我的 DF 应包含 5 列和 1000 行。
答案1
# make a list of all .sdf filles present in data folder:
dirlist = [os.path.basename(p) for p in glob.glob('data' + '/*.sdf')]
# create empty data file with 5 columns:
# name of the file, value of variable p, value of ac, value of don, value of wt
# for each sdf file get its name and calculate 4 different properties: p, ac, don, wt
holder = []
for sdf in dirlist:
sdf_name=sdf.rsplit( ".", 1 )[ 0 ]
# set a name of the file
key = f'{sdf_name}'
mol = open(sdf,'rb')
# --- do some specific calculations --
p = MolLogP(mol) # coeff conc-perm
ac = CalcNumLipinskiHBA(mol)#
don = CalcNumLipinskiHBD(mol)
wt = MolWt(mol)
# add one line to DF in the following order : ["key", "p", "ac", "don", "wt"]
output_list = pd.Series([key, p, ac, don, wt])
holder.append(output_list)
df = pd.concat(holder, axis = 1)
df.rename(columns={0:"key", 1:"p", 2:"ac", 3:"don", 4:"wt"], inplace = True)
print(df)