我有一个包含 9 个变量的 tsv 文件,如下所示:
> seqnames start endwidth strand metadata X.10logMacsq annotation distanceToTSS
元数据列包含我想要进行一些分析的信息,但我首先需要拆分条目并将它们放入自己的列中(带有标题)。元数据如下所示(第一行):
ID=SRX067411;Name=H3K27ac%20(@%20HMEC);Title=GSM733660:%20Bernstein%20HMEC%20H3K27ac;Cell%20group=Breast;<br>source_name=HMEC;biomaterial_provider=Lonza;lab=Broad;lab%20description=Bernstein%20-%20Broad%20Institute;datatype=ChipSeq;datatype%20description=Chromatin%20IP%20Sequencing;cell%20organism=human;cell%20description=mammary%20epithelial%20cells;cell%20karyotype=normal;cell%20lineage=ectoderm;cell%20sex=U;antibody%20antibodydescription=rabbit%20polyclonal.%20Antibody%20Target:%20H3K27ac;
此列(每行)总共有 27 个条目(此处未全部显示),但我想我应该先将它们全部写入自己的列中,然后删除不需要的条目。一旦他们有了描述性的列标题,那么我也可以删除他们的名字(例如:ID=SRX 只是 SRX 等等)
示例文件输入(第一行)
seqnames start end width strand metadata X.10logMacsq annotation geneChr geneStart geneEnd geneLength geneStrand geneId distanceToTSS
chr2 1711333 1711568 236 * ID=SRX067411;Name=H3K27ac%20(@%20HMEC);Title=GSM733660:%20Bernstein%20HMEC%20H3K27ac;Cell%20group=Breast;<br>source_name=HMEC;biomaterial_provider=Lonza;lab=Broad;lab%20description=Bernstein%20-%20Broad%20Institute;datatype=ChipSeq;datatype%20description=Chromatin%20IP%20Sequencing; 447 Intron (uc002qxa.3/7837, intron 1 of 22) 1 1635659 1748291 112633 2 7837 36723
谁能帮我解决这个问题或给我一些建议吗?我对 Bash 还很陌生,对这些命令还不太熟悉。
到目前为止,我刚刚设法清理了一些文件:
cut --complement -f 9-14 hisHMECanno.tsv | sed 's/%20/ /g' > hisHMECannoFilt.tsv
(原始文件有一些不必要的列,我刚刚删除了)
然后我一直尝试使用 awk 将条目分隔成制表符分隔的列,但无济于事。
答案1
以下 perl 脚本使用文本::CSV模块读取 TSV 文件并输出格式正确的 TSV 数据。
如果需要,它会自动引用字段,并使用 的Text::CSV
设置undef_str
将未定义的元数据字段输出为带引号的空字符串""
(带有如何将其打印为N/A
或 的注释示例--
)。
最多只应取消注释其中 3 行之一,其他应删除或注释掉。如果您只想将这些字段留空,请删除/注释掉所有这三行。
我建议在这些未定义的字段中添加一些内容,因为这样可以更轻松地使用其他工具对该脚本的输出进行后处理,这些工具可能将两个或多个选项卡(即空字段)视为与单个选项卡相同(例如,两者awk
和perl
默认情况下会这样做,除非您通过明确地将字段分隔符设置为单个选项卡来告诉他们不要这样做,而不是默认的“任意数量的空白”)。
Text::CSV
为 debian 和相关发行版打包为libtext-csv-perl
(纯 perl 版本)和libtext-csv-xs-perl
(更快编译的 C 模块)。使用apt install libtext-csv-perl
.其他发行版可能也打包了它。否则,请使用cpan
.
#!/usr/bin/perl
use strict;
use Text::CSV qw(csv);
my $csv=Text::CSV->new({sep_char => "\t", quote_space => 0});
# optional: define how to print undefined fields
#$csv->undef_str ('--');
#$csv->undef_str ('N/A');
$csv->undef_str ('""');
# get header line, split into an arrayref called $cols
my $cols = $csv->getline(*ARGV);
# get first data row, extract headers & data from metadata field
my $row = $csv->getline(*ARGV);
# The following line assumes that the metadata in the FIRST data row
# contains ALL of the metadata fields in the exact order you want them
# included in the output.
#
my $md_headers = extract_metadata_headers($$row[4]);
#
# If this is not the case, then delete the extract_metadata_headers
# subroutine and define the metadata fields manually with something
# like:
#
#my $md_headers = [
# 'ID', 'Name', 'Title', 'Cell group', 'source_name',
# 'biomaterial_provider', 'lab', 'lab description', 'datatype',
# 'datatype description', 'cell organism', 'cell description',
# 'cell karyotype', 'cell lineage', 'cell sex',
# 'antibody antibodydescription'
#];
# This defines both the extra metadata headers **and** the order
# that they will be included in each output row.
# extract the data from the metadata field
my $md_data = extract_metadata($$row[4]);
# replace the metadata header in $cols aref with the md headers
splice @$cols,4,1,@$md_headers;
# replace the metadata field in $row aref with the md fields
splice @$row,4,1,@$md_data;
# print the updated header line and the first row of data
$csv->say(*STDOUT,$cols);
$csv->say(*STDOUT,$row);
# main loop: extract and print the rest of the data
while (my $row = $csv->getline(*ARGV)) {
my $md_data = extract_metadata($$row[4]);
splice @$row,4,1,@$md_data;
$csv->say(*STDOUT,$row);
}
###
### subroutines
###
sub extract_metadata_headers {
my $md = clean_metadata(shift);
my @metadata = split /;/, $md;
my @headers=();
foreach (@metadata) {
next if m/^\s*$/; # skip empty metadata
my ($key,$val) = split /=/;
push @headers, $key;
};
return \@headers;
};
sub extract_metadata {
my $md = clean_metadata(shift);
my @metadata = split /;/, $md;
my %data=();
foreach (@metadata) {
next if m/^\s*$/; # skip empty metadata
my ($key,$val) = split /=/;
$data{$key} = $val;
};
return [@data{@$md_headers}];
};
sub clean_metadata {
my $md = shift;
$md =~ s/%(\d\d)/chr hex $1/eg; # decode %-encoded spaces etc.
$md =~ s/<[^>]*>//g; # remove HTML crap like <br>
return $md;
};
将其另存为,例如process-tsv.pl
,使其可执行,chmod +x process-tsv.pl
并在运行时为其提供文件名参数。例如
$ ./process-tsv.pl filename.tsv
它将向 stdout 生成如下输出:
$ ./process-tsv.pl input.tsv
seqnames start endwidth strand ID Name Title Cell group source_name biomaterial_provider lab lab description datatype datatype description cell organism cell description cell karyotype cell lineage cell sex antibody antibodydescription X.10logMacsq annotation distanceToTSS
seq1 1 10 X SRX067411 H3K27ac (@ HMEC) GSM733660: Bernstein HMEC H3K27ac Breast HMEC Lonza Broad Bernstein - Broad Institute ChipSeq Chromatin IP Sequencing human mammary epithelial cells normal ectoderm U rabbit polyclonal. Antibody Target: H3K27ac x10 annot dist
seq2 2 20 Y SRX067411 H3K27ac (@ HMEC) GSM733660: Bernstein HMEC H3K27ac "" "" Lonza Broad Bernstein - Broad Institute ChipSeq Chromatin IP Sequencing human mammary epithelial cells normal ectoderm U "" Y10 annot2 dist2
当然,您可以将输出重定向到 shell 中的文件:
./process-tsv.pl input.tsv > output.tsv
答案2
在每个 Unix 机器上的任何 shell 中使用任何 awk,这可能是您想要做的,但没有示例输入/输出,我们可以用它来测试猜测:
$ cat tst.awk
BEGIN { FS=OFS="\t" }
{
gsub(/%20/," ")
gsub(/<br>/,"")
}
NR==1 {
hdr = $0
next
}
NR==2 {
orig = $0
gsub(/=[^=;]+;/,OFS,$6)
sub(OFS"$","",$6)
tags = $6
$0 = hdr
$6 = tags
print
$0 = orig
}
{
gsub(/[^=;]+=/,OFS,$6)
sub("^"OFS,"",$6)
gsub(/;/,"",$6)
print
}
$ awk -f tst.awk file
> seqnames start endwidth strand ID Name Title Cell group source_name biomaterial_provider lab lab description datatype datatype description cell organism cell description cell karyotype cell lineage cell sex antibody antibodydescription X.10logMacsq annotation distanceToTSS
> foo bar etc anon SRX067411 H3K27ac (@ HMEC) GSM733660: Bernstein HMEC H3K27ac Breast HMEC Lonza Broad Bernstein - Broad Institute ChipSeq Chromatin IP Sequencing human mammary epithelial cells normal ectoderm U rabbit polyclonal. Antibody Target: H3K27ac end more stuff
以上是使用此输入文件运行的:
$ cat file
> seqnames start endwidth strand metadata X.10logMacsq annotation distanceToTSS
> foo bar etc anon ID=SRX067411;Name=H3K27ac%20(@%20HMEC);Title=GSM733660:%20Bernstein%20HMEC%20H3K27ac;Cell%20group=Breast;<br>source_name=HMEC;biomaterial_provider=Lonza;lab=Broad;lab%20description=Bernstein%20-%20Broad%20Institute;datatype=ChipSeq;datatype%20description=Chromatin%20IP%20Sequencing;cell%20organism=human;cell%20description=mammary%20epithelial%20cells;cell%20karyotype=normal;cell%20lineage=ectoderm;cell%20sex=U;antibody%20antibodydescription=rabbit%20polyclonal.%20Antibody%20Target:%20H3K27ac; end more stuff
其中所有空格都是制表符。
column
您可以通过使用使其可视化为表格来查看值如何与标签(列标题字符串)对齐:
输入:
$ column -s$'\t' -t file
> seqnames start endwidth strand metadata X.10logMacsq annotation distanceToTSS
> foo bar etc anon ID=SRX067411;Name=H3K27ac%20(@%20HMEC);Title=GSM733660:%20Bernstein%20HMEC%20H3K27ac;Cell%20group=Breast;<br>source_name=HMEC;biomaterial_provider=Lonza;lab=Broad;lab%20description=Bernstein%20-%20Broad%20Institute;datatype=ChipSeq;datatype%20description=Chromatin%20IP%20Sequencing;cell%20organism=human;cell%20description=mammary%20epithelial%20cells;cell%20karyotype=normal;cell%20lineage=ectoderm;cell%20sex=U;antibody%20antibodydescription=rabbit%20polyclonal.%20Antibody%20Target:%20H3K27ac; end more stuff
输出:
$ awk -f tst.awk file | column -s$'\t' -t
> seqnames start endwidth strand ID Name Title Cell group source_name biomaterial_provider lab lab description datatype datatype description cell organism cell description cell karyotype cell lineage cell sex antibody antibodydescription X.10logMacsq annotation distanceToTSS
> foo bar etc anon SRX067411 H3K27ac (@ HMEC) GSM733660: Bernstein HMEC H3K27ac Breast HMEC Lonza Broad Bernstein - Broad Institute ChipSeq Chromatin IP Sequencing human mammary epithelial cells normal ectoderm U rabbit polyclonal. Antibody Target: H3K27ac end more stuff
答案3
使用磨坊主
$ mlr --tsv put -S '
$metadata = gsub($metadata,"%20"," "); $metadata = gsub($metadata,"<br>|;$","")
' then put -S '
$* = mapsum($*,splitkvx($metadata,"=",";"))
' then cut -x -f metadata HisHMECanno.tsv
seqnames start end width strand X.10logMacsq annotation geneChr geneStart geneEnd geneLength geneStrand geneId distanceToTSS ID Name Title Cell group source_name biomaterial_provider lab lab description datatype datatype description
chr2 1711333 1711568 236 * 447 Intron (uc002qxa.3/7837, intron 1 of 22) 1 1635659 1748291 112633 2 7837 36723 SRX067411 H3K27ac (@ HMEC) GSM733660: Bernstein HMEC H3K27ac Breast HMEC Lonza Broad Bernstein - Broad Institute ChipSeq Chromatin IP Sequencing
这两个put
命令可以组合起来,但是我认为将它们分为“数据清理”步骤和“字段分割”步骤会更清楚。
将输出格式更改为 CSV 以使字段分割更清晰:
mlr --itsv --ocsv put -S '
$metadata = gsub($metadata,"%20"," "); $metadata = gsub($metadata,"<br>|;$","")
' then put -S '
$* = mapsum($*,splitkvx($metadata,"=",";"))
' then cut -x -f metadata HisHMECanno.tsv
seqnames,start,end,width,strand,X.10logMacsq,annotation,geneChr,geneStart,geneEnd,geneLength,geneStrand,geneId,distanceToTSS,ID,Name,Title,Cell group,source_name,biomaterial_provider,lab,lab description,datatype,datatype description
chr2,1711333,1711568,236,*,447,"Intron (uc002qxa.3/7837, intron 1 of 22)",1,1635659,1748291,112633,2,7837,36723,SRX067411,H3K27ac (@ HMEC),GSM733660: Bernstein HMEC H3K27ac,Breast,HMEC,Lonza,Broad,Bernstein - Broad Institute,ChipSeq,Chromatin IP Sequencing
答案4
这可以使用 Python 字典和列表数据结构,结合正则表达式和列表理解来完成。
python3 -c 'import sys, re
ifile = sys.argv[1]
fs,rs = ofs,ors = "\t","\n"
with open(ifile) as f:
for nr,l in enumerate(f,1):
F = l.rstrip(rs).split(fs)
if nr == 1:
H = F
idx_md = F.index("metadata")
continue
md_hdrs = re.findall(r"[^=;]+(?==)",F[idx_md])
md = dict(t.split("=") for t in re.sub(r";+$","",F[idx_md]).split(";"))
if nr == 2:
print(*H[:idx_md], *md_hdrs, *H[idx_md+1:], sep=ofs)
print(*F[:idx_md], *[md.get(key,"") for key in md_hdrs], *F[idx_md+1:], sep=ofs)
' file
输出:
seqnames start end width strand ID Name Title Cell%20group <br>source_name biomaterial_provider lab lab%20description datatype datatype%20description X.10logMacsq annotation geneChr geneStart geneEnd geneLength geneStrand geneId distanceToTSS
chr2 1711333 1711568 236 * SRX067411 H3K27ac%20(@%20HMEC) GSM733660:%20Bernstein%20HMEC%20H3K27ac Breast HMEC Lonza Broad Bernstein%20-%20Broad%20Institute ChipSeq Chromatin%20IP%20Sequencing 447 Intron (uc002qxa.3/7837, intron_1_of_22) 1 1635659 1748291 112633 2 7837 36723