我想缩进我的证明,使它们看起来像这样。请注意,“证明”一词与“定理”一词的对齐非常重要。但是,谷歌似乎没有给出答案。
Theorem: If there is a quadratic form that is Lipschitz then there is an isotropic
manifold locally resembling ℍ[x] in the quotient of Ker(ϕ) and ℍⁿ ⊗ G
Proof: Let ψ be a square-summable sequence in the rational quotient group. A simple
application of trichotomy completes the proof, which is left as an exercise for
the reader.
答案1
我知道原贴作者不想再使用这种格式,但如果有人感兴趣的话,我使用了类似下面的格式来对齐简历中的条目。它也可以在这里应用。
\documentclass{amsart}
\usepackage{lipsum}
\newcommand{\mycommand}[2]{%
\par\addvspace{\baselineskip}
\noindent
\begin{minipage}[t]{0.19\textwidth}
\begin{flushright}
\textbf{#1}
\end{flushright}
\end{minipage}
\hfill
\begin{minipage}[t]{0.79\textwidth}
\begin{flushleft}
#2
\end{flushleft}
\end{minipage}
\par\addvspace{\baselineskip}
}
\begin{document}
\lipsum[66]
\mycommand{Theorem:}{If there is a quadratic form that is Lipschitz then there is an isotropic manifold locally resembling $\mathbb{H}[x]$ in the quotient of Ker$({\phi})$ and $\mathbb{H}^{n}\otimes G$}
\mycommand{Proof:}{Let $\psi$ be a square-summable sequence in the rational quotient group. A simple application of trichotomy completes the proof, which is left as an exercise for the reader.}
\mycommand{Proposition:}{Some proposition}
\lipsum[75]
\end{document}