我正在尝试制作一个好看的明视光度函数图。所以我想制作彩色图,但它的颜色图应该取决于 X 值。可以用吗pgfplots
?
我也会很感激任何关于这种彩色情节的想法。
这是 MWE,抱歉坐标太多。我还没有将颜色改为 [紫色...红色]。
\documentclass{article}
\usepackage{tikz}
\usepackage{pgfplots}
\begin{document}
\begin{tikzpicture}
\begin{axis}[
axis x line=bottom,
axis y line=left,
ymax=1.1,xmin=390,xmax=710,
xlabel=$\lambda$,
ylabel=$Relative~Sensivity$]
\addplot[smooth,mesh,line width=1.5pt]
plot coordinates {
(401,2.85222E-03)
(402,3.29912E-03)
(403,3.79747E-03)
(404,4.35277E-03)
(405,4.97172E-03)
(406,5.66101E-03)
(407,6.42161E-03)
(408,7.25031E-03)
(409,8.14017E-03)
(410,9.07986E-03)
(411,1.00561E-02)
(412,1.10646E-02)
(413,1.21052E-02)
(414,1.31801E-02)
(415,1.42938E-02)
(416,1.54500E-02)
(417,1.66409E-02)
(418,1.78530E-02)
(419,1.90702E-02)
(420,2.02737E-02)
(421,2.14481E-02)
(422,2.26004E-02)
(423,2.37479E-02)
(424,2.49125E-02)
(425,2.61211E-02)
(426,2.73992E-02)
(427,2.87499E-02)
(428,3.01691E-02)
(429,3.16514E-02)
(430,3.31904E-02)
(431,3.47791E-02)
(432,3.64149E-02)
(433,3.80957E-02)
(434,3.98184E-02)
(435,4.15794E-02)
(436,4.33710E-02)
(437,4.51718E-02)
(438,4.69542E-02)
(439,4.86872E-02)
(440,5.03366E-02)
(441,5.18761E-02)
(442,5.33222E-02)
(443,5.47060E-02)
(444,5.60634E-02)
(445,5.74339E-02)
(446,5.88511E-02)
(447,6.03081E-02)
(448,6.17864E-02)
(449,6.32657E-02)
(450,6.47235E-02)
(451,6.61475E-02)
(452,6.75726E-02)
(453,6.90493E-02)
(454,7.06328E-02)
(455,7.23834E-02)
(456,7.43596E-02)
(457,7.65938E-02)
(458,7.91144E-02)
(459,8.19535E-02)
(460,8.51482E-02)
(461,8.87266E-02)
(462,9.26601E-02)
(463,9.68972E-02)
(464,1.01375E-01)
(465,1.06014E-01)
(466,1.10738E-01)
(467,1.15511E-01)
(468,1.20312E-01)
(469,1.25116E-01)
(470,1.29896E-01)
(471,1.34630E-01)
(472,1.39331E-01)
(473,1.44023E-01)
(474,1.48737E-01)
(475,1.53507E-01)
(476,1.58364E-01)
(477,1.63320E-01)
(478,1.68376E-01)
(479,1.73537E-01)
(480,1.78805E-01)
(481,1.84182E-01)
(482,1.89656E-01)
(483,1.95210E-01)
(484,2.00826E-01)
(485,2.06483E-01)
(486,2.12183E-01)
(487,2.18028E-01)
(488,2.24159E-01)
(489,2.30730E-01)
(490,2.37916E-01)
(491,2.45871E-01)
(492,2.54602E-01)
(493,2.64076E-01)
(494,2.74249E-01)
(495,2.85068E-01)
(496,2.96484E-01)
(497,3.08501E-01)
(498,3.21139E-01)
(499,3.34418E-01)
(500,3.48354E-01)
(501,3.62960E-01)
(502,3.78228E-01)
(503,3.94136E-01)
(504,4.10658E-01)
(505,4.27760E-01)
(506,4.45399E-01)
(507,4.63540E-01)
(508,4.82138E-01)
(509,5.01143E-01)
(510,5.20497E-01)
(511,5.40139E-01)
(512,5.60021E-01)
(513,5.80097E-01)
(514,6.00317E-01)
(515,6.20626E-01)
(516,6.40940E-01)
(517,6.61077E-01)
(518,6.80813E-01)
(519,6.99904E-01)
(520,7.18089E-01)
(521,7.35159E-01)
(522,7.51182E-01)
(523,7.66314E-01)
(524,7.80735E-01)
(525,7.94645E-01)
(526,8.08207E-01)
(527,8.21382E-01)
(528,8.34070E-01)
(529,8.46171E-01)
(530,8.57580E-01)
(531,8.68241E-01)
(532,8.78306E-01)
(533,8.87991E-01)
(534,8.97521E-01)
(535,9.07135E-01)
(536,9.16995E-01)
(537,9.26929E-01)
(538,9.36673E-01)
(539,9.45948E-01)
(540,9.54468E-01)
(541,9.61983E-01)
(542,9.68439E-01)
(543,9.73829E-01)
(544,9.78152E-01)
(545,9.81411E-01)
(546,9.83667E-01)
(547,9.85208E-01)
(548,9.86381E-01)
(549,9.87536E-01)
(550,9.89023E-01)
(551,9.91081E-01)
(552,9.93491E-01)
(553,9.95917E-01)
(554,9.98021E-01)
(555,9.99461E-01)
(556,9.99993E-01)
(557,9.99756E-01)
(558,9.98984E-01)
(559,9.97912E-01)
(560,9.96774E-01)
(561,9.95736E-01)
(562,9.94711E-01)
(563,9.93553E-01)
(564,9.92116E-01)
(565,9.90255E-01)
(566,9.87860E-01)
(567,9.84932E-01)
(568,9.81504E-01)
(569,9.77603E-01)
(570,9.73261E-01)
(571,9.68476E-01)
(572,9.63137E-01)
(573,9.57106E-01)
(574,9.50254E-01)
(575,9.42457E-01)
(576,9.33690E-01)
(577,9.24289E-01)
(578,9.14671E-01)
(579,9.05233E-01)
(580,8.96361E-01)
(581,8.88307E-01)
(582,8.80846E-01)
(583,8.73645E-01)
(584,8.66376E-01)
(585,8.58720E-01)
(586,8.50430E-01)
(587,8.41505E-01)
(588,8.32011E-01)
(589,8.22015E-01)
(590,8.11587E-01)
(591,8.00787E-01)
(592,7.89652E-01)
(593,7.78205E-01)
(594,7.66473E-01)
(595,7.54479E-01)
(596,7.42247E-01)
(597,7.29823E-01)
(598,7.17252E-01)
(599,7.04582E-01)
(600,6.91855E-01)
(601,6.79101E-01)
(602,6.66285E-01)
(603,6.53359E-01)
(604,6.40281E-01)
(605,6.27007E-01)
(606,6.13515E-01)
(607,5.99849E-01)
(608,5.86068E-01)
(609,5.72226E-01)
(610,5.58375E-01)
(611,5.44554E-01)
(612,5.30767E-01)
(613,5.17013E-01)
(614,5.03289E-01)
(615,4.89595E-01)
(616,4.75944E-01)
(617,4.62396E-01)
(618,4.49015E-01)
(619,4.35862E-01)
(620,4.22990E-01)
(621,4.10415E-01)
(622,3.98036E-01)
(623,3.85730E-01)
(624,3.73391E-01)
(625,3.60924E-01)
(626,3.48286E-01)
(627,3.35570E-01)
(628,3.22896E-01)
(629,3.10370E-01)
(630,2.98086E-01)
(631,2.86116E-01)
(632,2.74482E-01)
(633,2.63195E-01)
(634,2.52263E-01)
(635,2.41690E-01)
(636,2.31481E-01)
(637,2.21638E-01)
(638,2.12162E-01)
(639,2.03054E-01)
(640,1.94312E-01)
(641,1.85923E-01)
(642,1.77827E-01)
(643,1.69965E-01)
(644,1.62284E-01)
(645,1.54740E-01)
(646,1.47308E-01)
(647,1.40017E-01)
(648,1.32901E-01)
(649,1.25991E-01)
(650,1.19312E-01)
(651,1.12882E-01)
(652,1.06711E-01)
(653,1.00805E-01)
(654,9.51665E-02)
(655,8.97959E-02)
(656,8.46904E-02)
(657,7.98401E-02)
(658,7.52337E-02)
(659,7.08606E-02)
(660,6.67104E-02)
(661,6.27736E-02)
(662,5.90418E-02)
(663,5.55070E-02)
(664,5.21614E-02)
(665,4.89970E-02)
(666,4.60058E-02)
(667,4.31788E-02)
(668,4.05075E-02)
(669,3.79838E-02)
(670,3.55998E-02)
(671,3.33486E-02)
(672,3.12233E-02)
(673,2.92178E-02)
(674,2.73260E-02)
(675,2.55422E-02)
(676,2.38612E-02)
(677,2.22786E-02)
(678,2.07902E-02)
(679,1.93919E-02)
(680,1.80794E-02)
(681,1.68482E-02)
(682,1.56919E-02)
(683,1.46045E-02)
(684,1.35806E-02)
(685,1.26157E-02)
(686,1.17070E-02)
(687,1.08561E-02)
(688,1.00648E-02)
(689,9.33338E-03)
(690,8.66128E-03)
(691,8.04605E-03)
(692,7.48113E-03)
(693,6.95999E-03)
(694,6.47707E-03)
(695,6.02768E-03)
(696,5.60817E-03)
(697,5.21669E-03)
(698,4.85179E-03)
(699,4.51201E-03)
(700,4.19594E-03)
};
\end{axis}
\end{tikzpicture}
\end{document}
答案1
您可以使用point meta
键;x
值使用可用x
坐标作为点元数据。有关更多详细信息,请参阅手册第 157-158 页pgfplots
。
\documentclass{article}
\usepackage{tikz}
\usepackage{pgfplots}
\begin{document}
\begin{tikzpicture}
\begin{axis}[
axis x line=bottom,
axis y line=left,
ymax=1.1,xmin=390,xmax=710,
xlabel=$x$,ylabel=$\sin x$,
xlabel=$\lambda$,
ylabel=$Relative~Sensivity$,
point meta=x]
\addplot[smooth,mesh,line width=1.5pt]
plot coordinates {
(401,2.85222E-03)
(402,3.29912E-03)
(403,3.79747E-03)
(404,4.35277E-03)
(405,4.97172E-03)
(406,5.66101E-03)
(407,6.42161E-03)
(408,7.25031E-03)
(409,8.14017E-03)
(410,9.07986E-03)
(411,1.00561E-02)
(412,1.10646E-02)
(413,1.21052E-02)
(414,1.31801E-02)
(415,1.42938E-02)
(416,1.54500E-02)
(417,1.66409E-02)
(418,1.78530E-02)
(419,1.90702E-02)
(420,2.02737E-02)
(421,2.14481E-02)
(422,2.26004E-02)
(423,2.37479E-02)
(424,2.49125E-02)
(425,2.61211E-02)
(426,2.73992E-02)
(427,2.87499E-02)
(428,3.01691E-02)
(429,3.16514E-02)
(430,3.31904E-02)
(431,3.47791E-02)
(432,3.64149E-02)
(433,3.80957E-02)
(434,3.98184E-02)
(435,4.15794E-02)
(436,4.33710E-02)
(437,4.51718E-02)
(438,4.69542E-02)
(439,4.86872E-02)
(440,5.03366E-02)
(441,5.18761E-02)
(442,5.33222E-02)
(443,5.47060E-02)
(444,5.60634E-02)
(445,5.74339E-02)
(446,5.88511E-02)
(447,6.03081E-02)
(448,6.17864E-02)
(449,6.32657E-02)
(450,6.47235E-02)
(451,6.61475E-02)
(452,6.75726E-02)
(453,6.90493E-02)
(454,7.06328E-02)
(455,7.23834E-02)
(456,7.43596E-02)
(457,7.65938E-02)
(458,7.91144E-02)
(459,8.19535E-02)
(460,8.51482E-02)
(461,8.87266E-02)
(462,9.26601E-02)
(463,9.68972E-02)
(464,1.01375E-01)
(465,1.06014E-01)
(466,1.10738E-01)
(467,1.15511E-01)
(468,1.20312E-01)
(469,1.25116E-01)
(470,1.29896E-01)
(471,1.34630E-01)
(472,1.39331E-01)
(473,1.44023E-01)
(474,1.48737E-01)
(475,1.53507E-01)
(476,1.58364E-01)
(477,1.63320E-01)
(478,1.68376E-01)
(479,1.73537E-01)
(480,1.78805E-01)
(481,1.84182E-01)
(482,1.89656E-01)
(483,1.95210E-01)
(484,2.00826E-01)
(485,2.06483E-01)
(486,2.12183E-01)
(487,2.18028E-01)
(488,2.24159E-01)
(489,2.30730E-01)
(490,2.37916E-01)
(491,2.45871E-01)
(492,2.54602E-01)
(493,2.64076E-01)
(494,2.74249E-01)
(495,2.85068E-01)
(496,2.96484E-01)
(497,3.08501E-01)
(498,3.21139E-01)
(499,3.34418E-01)
(500,3.48354E-01)
(501,3.62960E-01)
(502,3.78228E-01)
(503,3.94136E-01)
(504,4.10658E-01)
(505,4.27760E-01)
(506,4.45399E-01)
(507,4.63540E-01)
(508,4.82138E-01)
(509,5.01143E-01)
(510,5.20497E-01)
(511,5.40139E-01)
(512,5.60021E-01)
(513,5.80097E-01)
(514,6.00317E-01)
(515,6.20626E-01)
(516,6.40940E-01)
(517,6.61077E-01)
(518,6.80813E-01)
(519,6.99904E-01)
(520,7.18089E-01)
(521,7.35159E-01)
(522,7.51182E-01)
(523,7.66314E-01)
(524,7.80735E-01)
(525,7.94645E-01)
(526,8.08207E-01)
(527,8.21382E-01)
(528,8.34070E-01)
(529,8.46171E-01)
(530,8.57580E-01)
(531,8.68241E-01)
(532,8.78306E-01)
(533,8.87991E-01)
(534,8.97521E-01)
(535,9.07135E-01)
(536,9.16995E-01)
(537,9.26929E-01)
(538,9.36673E-01)
(539,9.45948E-01)
(540,9.54468E-01)
(541,9.61983E-01)
(542,9.68439E-01)
(543,9.73829E-01)
(544,9.78152E-01)
(545,9.81411E-01)
(546,9.83667E-01)
(547,9.85208E-01)
(548,9.86381E-01)
(549,9.87536E-01)
(550,9.89023E-01)
(551,9.91081E-01)
(552,9.93491E-01)
(553,9.95917E-01)
(554,9.98021E-01)
(555,9.99461E-01)
(556,9.99993E-01)
(557,9.99756E-01)
(558,9.98984E-01)
(559,9.97912E-01)
(560,9.96774E-01)
(561,9.95736E-01)
(562,9.94711E-01)
(563,9.93553E-01)
(564,9.92116E-01)
(565,9.90255E-01)
(566,9.87860E-01)
(567,9.84932E-01)
(568,9.81504E-01)
(569,9.77603E-01)
(570,9.73261E-01)
(571,9.68476E-01)
(572,9.63137E-01)
(573,9.57106E-01)
(574,9.50254E-01)
(575,9.42457E-01)
(576,9.33690E-01)
(577,9.24289E-01)
(578,9.14671E-01)
(579,9.05233E-01)
(580,8.96361E-01)
(581,8.88307E-01)
(582,8.80846E-01)
(583,8.73645E-01)
(584,8.66376E-01)
(585,8.58720E-01)
(586,8.50430E-01)
(587,8.41505E-01)
(588,8.32011E-01)
(589,8.22015E-01)
(590,8.11587E-01)
(591,8.00787E-01)
(592,7.89652E-01)
(593,7.78205E-01)
(594,7.66473E-01)
(595,7.54479E-01)
(596,7.42247E-01)
(597,7.29823E-01)
(598,7.17252E-01)
(599,7.04582E-01)
(600,6.91855E-01)
(601,6.79101E-01)
(602,6.66285E-01)
(603,6.53359E-01)
(604,6.40281E-01)
(605,6.27007E-01)
(606,6.13515E-01)
(607,5.99849E-01)
(608,5.86068E-01)
(609,5.72226E-01)
(610,5.58375E-01)
(611,5.44554E-01)
(612,5.30767E-01)
(613,5.17013E-01)
(614,5.03289E-01)
(615,4.89595E-01)
(616,4.75944E-01)
(617,4.62396E-01)
(618,4.49015E-01)
(619,4.35862E-01)
(620,4.22990E-01)
(621,4.10415E-01)
(622,3.98036E-01)
(623,3.85730E-01)
(624,3.73391E-01)
(625,3.60924E-01)
(626,3.48286E-01)
(627,3.35570E-01)
(628,3.22896E-01)
(629,3.10370E-01)
(630,2.98086E-01)
(631,2.86116E-01)
(632,2.74482E-01)
(633,2.63195E-01)
(634,2.52263E-01)
(635,2.41690E-01)
(636,2.31481E-01)
(637,2.21638E-01)
(638,2.12162E-01)
(639,2.03054E-01)
(640,1.94312E-01)
(641,1.85923E-01)
(642,1.77827E-01)
(643,1.69965E-01)
(644,1.62284E-01)
(645,1.54740E-01)
(646,1.47308E-01)
(647,1.40017E-01)
(648,1.32901E-01)
(649,1.25991E-01)
(650,1.19312E-01)
(651,1.12882E-01)
(652,1.06711E-01)
(653,1.00805E-01)
(654,9.51665E-02)
(655,8.97959E-02)
(656,8.46904E-02)
(657,7.98401E-02)
(658,7.52337E-02)
(659,7.08606E-02)
(660,6.67104E-02)
(661,6.27736E-02)
(662,5.90418E-02)
(663,5.55070E-02)
(664,5.21614E-02)
(665,4.89970E-02)
(666,4.60058E-02)
(667,4.31788E-02)
(668,4.05075E-02)
(669,3.79838E-02)
(670,3.55998E-02)
(671,3.33486E-02)
(672,3.12233E-02)
(673,2.92178E-02)
(674,2.73260E-02)
(675,2.55422E-02)
(676,2.38612E-02)
(677,2.22786E-02)
(678,2.07902E-02)
(679,1.93919E-02)
(680,1.80794E-02)
(681,1.68482E-02)
(682,1.56919E-02)
(683,1.46045E-02)
(684,1.35806E-02)
(685,1.26157E-02)
(686,1.17070E-02)
(687,1.08561E-02)
(688,1.00648E-02)
(689,9.33338E-03)
(690,8.66128E-03)
(691,8.04605E-03)
(692,7.48113E-03)
(693,6.95999E-03)
(694,6.47707E-03)
(695,6.02768E-03)
(696,5.60817E-03)
(697,5.21669E-03)
(698,4.85179E-03)
(699,4.51201E-03)
(700,4.19594E-03)
};
\end{axis}
\end{tikzpicture}
\end{document}