我正在使用\newtheorem{thm}{Theorem}[section]
并希望阅读我的文章启发式证明而不是标准证明。我正在展示伊藤,但方式并不严谨。有什么想法吗?
\begin{Heuristic proof}
Since $g(x, t)$ is twice continuously-differentiable, we can apply Taylor's expansion to get
\begin{align*}
dg(W,t) &= g(t+\Updelta t\,,\,W+\Updelta W) - g(t\,,\,W)\\
&= \frac{\partial g}{\partial t}dt + \frac{\partial g}{\partial x}dW + \frac{1}{2}\frac{\partial^2 g}{\partial x^2}(dW)^2 + \frac{1}{2}\frac{\partial^2 g}{\partial t^2}(dt)^2+ \frac{1}{2}\frac{\partial^2 g}{\partial t \partial x}(dt)(dW) + \dots\,\,(*)
\end{align*}
\end{Heuristic proof}
答案1
下面定义了一个新的类似证明的环境,其中证明标题暂时改为“启发式证明”(尽管我自己对使用这个词有所保留启发式在这种情况下!),从评论中实现了 lockstep 的想法,但原始的证明环境仍然存在。
\documentclass{article}
%\url{http://tex.stackexchange.com/q/110653/86}
\usepackage{amsthm}
\newtheorem{thm}{Theorem}[section]
\newenvironment{hproof}{%
\renewcommand{\proofname}{Heuristic Proof}\proof}{\endproof}
\begin{document}
\section{Demonstration of Proof Techniques}
\begin{thm}
Almost all primes are odd.
\end{thm}
\begin{proof}
There are an infinite number of primes, only one of which is even.
\end{proof}
\begin{thm}
Almost no primes are even.
\end{thm}
\begin{hproof}
Well, it's just obvious, innit?
\end{hproof}
\begin{thm}
Almost every prime is red.
\end{thm}
\begin{proof}
You can tell I'm running out of ideas here.
\end{proof}
\end{document}