我正在尝试复制这个问题的行为:使用 tikzlibrary spy 而不放大线宽和/或标记大小。我想spy
将的形状改为rectangle
,但我做不到scope
(我不得不承认,我不太明白为什么原始问题中这样做有效)。有人能帮我吗?
妇女权利委员会:
\documentclass{memoir}
\usepackage{amsmath, tikz, pgfplots}
\usetikzlibrary{calc,spy,shapes}
\pgfplotsset{compat=newest}
\begin{document}
\begin{tikzpicture}
% [spy using outlines={rectangle,black,magnification=3,connect spies}]
\begin{axis}[%
width=6.01828521434821in,
height=4.74667979002625in,
unbounded coords=jump,
scale only axis,
xmin=1.25,
xmax=2,
xlabel={Robustness},
ymin=0,
ymax=20,
ylabel={Controller},
title={Case 11},
% legend style={draw=black,fill=white,legend cell align=left}
]
\newcommand*\myplots[1][]{
\addplot [
color=blue,
dashed
]
table[row sep=crcr]{
1.250000000054 0.218471486504557\\1.27500000012472 0.235880794037559\\1.30000000004985 0.253093675278193\\1.32499999988962 0.269996702493353\\1.34999999996296 0.28660169532495\\1.37500000003271 0.302803529131698\\1.4 0.318627316831094\\1.42500000000018 0.333967811176506\\1.44999999975398 0.348915976282584\\1.47499999999985 0.363393665978672\\1.50000000000007 0.377386190083728\\1.52499999999677 0.391065980885588\\1.54999999999987 0.404406696565785\\1.5749999999932 0.417357153126701\\1.60000000000001 0.429890180101467\\1.62500000007965 0.441495914781593\\1.64999999998047 0.453420186117445\\1.67500000000006 0.464885624062778\\1.70000000000013 0.475698022605379\\1.72499999999977 0.486001302461843\\1.75000000007258 0.49588760557761\\1.77500000001522 0.505406921339204\\1.79999999999992 0.514575948858101\\1.8249999999994 0.523580224222934\\1.84999999999966 0.532346980549898\\1.87499999998767 0.540884368439134\\1.90000000002483 0.549236128880721\\1.92499999997271 0.557390601810701\\1.94999999999657 0.565349329095157\\1.97499999999941 0.573100654346336\\1.99999999999993 0.580661122004988\\2.02499999998678 0.588035048696743\\2.0499999999709 0.595221272967935\\2.07499999999558 0.602215073143855\\2.09999999981776 0.609014392276178\\2.12500000001126 0.615634705868222\\2.14999999999957 0.622107376143054\\2.17499999994578 0.628535289209435\\2.19999999832383 0.63479954406909\\2.225 0.640975653060916\\2.24999999999955 0.647023272731091\\2.27499999999981 0.652900079435489\\2.29999999999833 0.658608487562972\\2.32499999999118 0.664162521737991\\2.34999999999773 0.669564611132752\\2.3750000000001 0.674786909878852\\2.40000000000024 0.679871708587361\\2.42499999998267 0.68481930558268\\2.44999999993369 0.689620895991369\\2.475 0.694300387671984\\2.50000000000226 0.698847019454327\\2.52499999999607 0.703231052229968\\2.54999999999282 0.707335949070966\\2.575 0.711299740037372\\2.59999999997469 0.715121564545835\\2.62500000002107 0.719030281788718\\2.64999999998823 0.722750679025289\\2.67499999999833 0.726355404984384\\2.6999999999989 0.729841563597055\\2.72500000000001 0.733213147420525\\2.75000000000046 0.736469697155365\\2.77500000011202 0.739681867953894\\2.8 0.742786117829059\\2.82500000000028 0.745831867778158\\2.84999999999055 0.748760245235199\\2.87499999999654 0.751587709302175\\2.90000000000011 0.754337713416536\\2.92500000001402 0.756957274828441\\2.94999999995396 0.759357524849041\\2.97499999999574 0.761687855897812\\3.00000000000154 0.764338301992918\\};
% \addlegendentry{po:pid};
\addplot [
color=green!50!black,
dashed
]
table[row sep=crcr]{
1.250000000054 0.590067068740046\\1.27500000012472 0.587559925194454\\1.30000000004985 0.586376714983635\\1.32499999988962 0.586069496190726\\1.34999999996296 0.586583764906821\\1.37500000003271 0.587586732327579\\1.4 0.589106686232638\\1.42500000000018 0.590799582313491\\1.44999999975398 0.592894933769734\\1.47499999999985 0.595115212158793\\1.50000000000007 0.597338496940835\\1.52499999999677 0.600163078036215\\1.54999999999987 0.603553183039573\\1.5749999999932 0.607355964366702\\1.60000000000001 0.611472392727962\\1.62500000007965 0.612640770551816\\1.64999999998047 0.618542970092304\\1.67500000000006 0.625478240488116\\1.70000000000013 0.63111283078678\\1.72499999999977 0.635924446858566\\1.75000000007258 0.640430875313834\\1.77500000001522 0.644633876853955\\1.79999999999992 0.647757322657836\\1.8249999999994 0.647552686193448\\1.84999999999966 0.647363620909126\\1.87499999998767 0.647117668558105\\1.90000000002483 0.646013166144435\\1.92499999997271 0.644422071010403\\1.94999999999657 0.642591297950079\\1.97499999999941 0.640866907916906\\1.99999999999993 0.639224831229371\\2.02499999998678 0.636685323281278\\2.0499999999709 0.633964341182746\\2.07499999999558 0.631446791852552\\2.09999999981776 0.628537387562625\\2.12500000001126 0.626107411465097\\2.14999999999957 0.624103000469\\2.17499999994578 0.62449136318196\\2.19999999832383 0.624449479840847\\2.225 0.6256877319412\\2.24999999999955 0.628088304645751\\2.27499999999981 0.630472877532383\\2.29999999999833 0.63283206246448\\2.32499999999118 0.635116015919806\\2.34999999999773 0.637322260692226\\2.3750000000001 0.640065236430338\\2.40000000000024 0.642534886174564\\2.42499999998267 0.644944092104574\\2.44999999993369 0.647313968075354\\2.475 0.649603381645786\\2.50000000000226 0.651905320157395\\2.52499999999607 0.654572686699921\\2.54999999999282 0.658065576936871\\2.575 0.661530686251933\\2.59999999997469 0.664985448106105\\2.62500000002107 0.667216476217143\\2.64999999998823 0.669895462979295\\2.67499999999833 0.672557424400875\\2.6999999999989 0.675234842685167\\2.72500000000001 0.677932291475736\\2.75000000000046 0.680659050710123\\2.77500000011202 0.683201448501821\\2.8 0.685708044714863\\2.82500000000028 0.688088365642656\\2.84999999999055 0.690571448381062\\2.87499999999654 0.693076214461211\\2.90000000000011 0.695575684929241\\2.92500000001402 0.698184293706798\\2.94999999995396 0.701235761040505\\2.97499999999574 0.704202908157281\\3.00000000000154 0.705980592056065\\};
}
\newcommand*\spyfactor{3.1622776601683793319988935444327}
\newcommand*\spypoint{axis cs:1.4,0.5}
\newcommand*\spyviewer{axis cs:1.6,10}
\myplots
\node[very thin, rectangle, draw, minimum height=0.05\textwidth, minimum width=0.1\textwidth, inner sep=0pt] (spypoint) at (\spypoint) {};
\node[rectangle, draw, minimum height=0.25\textwidth, minimum width=0.5\textwidth, inner sep=0pt] (spyviewer) at (\spyviewer) {};
\draw (spypoint) edge (spyviewer);
\begin{scope}
\clip (spyviewer) rectangle (0.25\textwidth-.5\pgflinewidth,0.5\textwidth-.5\pgflinewidth);
\pgfmathparse{\spyfactor^2/(\spyfactor-1)}
\begin{scope}[scale around={\spyfactor:($(\spyviewer)!\spyfactor^2/(\spyfactor^2-1)!(\spypoint)$)}]
\myplots
\end{scope}
\end{scope}
\end{axis}
\end{tikzpicture}%
\end{document}
答案1
您几乎已经掌握了它,您只需要\clip
根据spyviewer
节点定义矩形:
\clip (spyviewer.south west) rectangle (spyviewer.north east);
\documentclass{memoir}
\usepackage{amsmath, tikz, pgfplots}
\usetikzlibrary{calc,spy,shapes}
\pgfplotsset{compat=newest}
\begin{document}
\begin{tikzpicture}
% [spy using outlines={rectangle,black,magnification=3,connect spies}]
\begin{axis}[%
width=6.01828521434821in,
height=4.74667979002625in,
unbounded coords=jump,
scale only axis,
xmin=1.25,
xmax=2,
xlabel={Robustness},
ymin=0,
ymax=20,
ylabel={Controller},
title={Case 11},
% legend style={draw=black,fill=white,legend cell align=left}
]
\newcommand*\myplots[1][]{
\addplot [
color=blue,
dashed
]
table[row sep=crcr]{
1.250000000054 0.218471486504557\\1.27500000012472 0.235880794037559\\1.30000000004985 0.253093675278193\\1.32499999988962 0.269996702493353\\1.34999999996296 0.28660169532495\\1.37500000003271 0.302803529131698\\1.4 0.318627316831094\\1.42500000000018 0.333967811176506\\1.44999999975398 0.348915976282584\\1.47499999999985 0.363393665978672\\1.50000000000007 0.377386190083728\\1.52499999999677 0.391065980885588\\1.54999999999987 0.404406696565785\\1.5749999999932 0.417357153126701\\1.60000000000001 0.429890180101467\\1.62500000007965 0.441495914781593\\1.64999999998047 0.453420186117445\\1.67500000000006 0.464885624062778\\1.70000000000013 0.475698022605379\\1.72499999999977 0.486001302461843\\1.75000000007258 0.49588760557761\\1.77500000001522 0.505406921339204\\1.79999999999992 0.514575948858101\\1.8249999999994 0.523580224222934\\1.84999999999966 0.532346980549898\\1.87499999998767 0.540884368439134\\1.90000000002483 0.549236128880721\\1.92499999997271 0.557390601810701\\1.94999999999657 0.565349329095157\\1.97499999999941 0.573100654346336\\1.99999999999993 0.580661122004988\\2.02499999998678 0.588035048696743\\2.0499999999709 0.595221272967935\\2.07499999999558 0.602215073143855\\2.09999999981776 0.609014392276178\\2.12500000001126 0.615634705868222\\2.14999999999957 0.622107376143054\\2.17499999994578 0.628535289209435\\2.19999999832383 0.63479954406909\\2.225 0.640975653060916\\2.24999999999955 0.647023272731091\\2.27499999999981 0.652900079435489\\2.29999999999833 0.658608487562972\\2.32499999999118 0.664162521737991\\2.34999999999773 0.669564611132752\\2.3750000000001 0.674786909878852\\2.40000000000024 0.679871708587361\\2.42499999998267 0.68481930558268\\2.44999999993369 0.689620895991369\\2.475 0.694300387671984\\2.50000000000226 0.698847019454327\\2.52499999999607 0.703231052229968\\2.54999999999282 0.707335949070966\\2.575 0.711299740037372\\2.59999999997469 0.715121564545835\\2.62500000002107 0.719030281788718\\2.64999999998823 0.722750679025289\\2.67499999999833 0.726355404984384\\2.6999999999989 0.729841563597055\\2.72500000000001 0.733213147420525\\2.75000000000046 0.736469697155365\\2.77500000011202 0.739681867953894\\2.8 0.742786117829059\\2.82500000000028 0.745831867778158\\2.84999999999055 0.748760245235199\\2.87499999999654 0.751587709302175\\2.90000000000011 0.754337713416536\\2.92500000001402 0.756957274828441\\2.94999999995396 0.759357524849041\\2.97499999999574 0.761687855897812\\3.00000000000154 0.764338301992918\\};
% \addlegendentry{po:pid};
\addplot [
color=green!50!black,
dashed
]
table[row sep=crcr]{
1.250000000054 0.590067068740046\\1.27500000012472 0.587559925194454\\1.30000000004985 0.586376714983635\\1.32499999988962 0.586069496190726\\1.34999999996296 0.586583764906821\\1.37500000003271 0.587586732327579\\1.4 0.589106686232638\\1.42500000000018 0.590799582313491\\1.44999999975398 0.592894933769734\\1.47499999999985 0.595115212158793\\1.50000000000007 0.597338496940835\\1.52499999999677 0.600163078036215\\1.54999999999987 0.603553183039573\\1.5749999999932 0.607355964366702\\1.60000000000001 0.611472392727962\\1.62500000007965 0.612640770551816\\1.64999999998047 0.618542970092304\\1.67500000000006 0.625478240488116\\1.70000000000013 0.63111283078678\\1.72499999999977 0.635924446858566\\1.75000000007258 0.640430875313834\\1.77500000001522 0.644633876853955\\1.79999999999992 0.647757322657836\\1.8249999999994 0.647552686193448\\1.84999999999966 0.647363620909126\\1.87499999998767 0.647117668558105\\1.90000000002483 0.646013166144435\\1.92499999997271 0.644422071010403\\1.94999999999657 0.642591297950079\\1.97499999999941 0.640866907916906\\1.99999999999993 0.639224831229371\\2.02499999998678 0.636685323281278\\2.0499999999709 0.633964341182746\\2.07499999999558 0.631446791852552\\2.09999999981776 0.628537387562625\\2.12500000001126 0.626107411465097\\2.14999999999957 0.624103000469\\2.17499999994578 0.62449136318196\\2.19999999832383 0.624449479840847\\2.225 0.6256877319412\\2.24999999999955 0.628088304645751\\2.27499999999981 0.630472877532383\\2.29999999999833 0.63283206246448\\2.32499999999118 0.635116015919806\\2.34999999999773 0.637322260692226\\2.3750000000001 0.640065236430338\\2.40000000000024 0.642534886174564\\2.42499999998267 0.644944092104574\\2.44999999993369 0.647313968075354\\2.475 0.649603381645786\\2.50000000000226 0.651905320157395\\2.52499999999607 0.654572686699921\\2.54999999999282 0.658065576936871\\2.575 0.661530686251933\\2.59999999997469 0.664985448106105\\2.62500000002107 0.667216476217143\\2.64999999998823 0.669895462979295\\2.67499999999833 0.672557424400875\\2.6999999999989 0.675234842685167\\2.72500000000001 0.677932291475736\\2.75000000000046 0.680659050710123\\2.77500000011202 0.683201448501821\\2.8 0.685708044714863\\2.82500000000028 0.688088365642656\\2.84999999999055 0.690571448381062\\2.87499999999654 0.693076214461211\\2.90000000000011 0.695575684929241\\2.92500000001402 0.698184293706798\\2.94999999995396 0.701235761040505\\2.97499999999574 0.704202908157281\\3.00000000000154 0.705980592056065\\};
}
\newcommand*\spyfactor{3.1622776601683793319988935444327}
\newcommand*\spypoint{axis cs:1.4,0.5}
\newcommand*\spyviewer{axis cs:1.6,10}
\myplots
\node[very thin, rectangle, draw, minimum height=0.05\textwidth, minimum width=0.1\textwidth, inner sep=0pt] (spypoint) at (\spypoint) {};
\node[rectangle, draw, minimum height=0.25\textwidth, minimum width=0.5\textwidth, inner sep=0pt] (spyviewer) at (\spyviewer) {};
\draw (spypoint) edge (spyviewer);
\begin{scope}
\clip (spyviewer.south west) rectangle (spyviewer.north east);
\pgfmathparse{\spyfactor^2/(\spyfactor-1)}
\begin{scope}[scale around={\spyfactor:($(\spyviewer)!\spyfactor^2/(\spyfactor^2-1)!(\spypoint)$)}]
\myplots
\end{scope}
\end{scope}
\end{axis}
\end{tikzpicture}%
\end{document}