我正在使用 amsmath 包,在子方程环境中我有以下方程组
\begin{subequations}
\begin{align}
&\rho\left(u\frac{\partial u}{\partial x}+v\frac{\partial u}{\partial r}\right)=-\frac{\partial P}{\partial x}+\frac{M^2_\infty}{Re}\frac{1}{r}\frac{\partial}{\partial r}\left(\mu r\frac{\partial u}{\partial r}\right)\\
&\rho\left(u\frac{\partial h}{\partial x}+v\frac{\partial h}{\partial r}\right)=\rho\left(u\frac{\partial P}{\partial x}+v\frac{\partial P}{\partial r}\right)+\frac{M^2_\infty}{Re\dot Pr}\frac{1}{r}\frac{\partial}{\partial r}\left(\mu r\frac{\partial h}{\partial r}\right)+\frac{M^2_\infty}{Re}\mu\left(\frac{\partial u}{\partial r}\right)^2
\end{align}
\end{subequations}
使用此代码,第二个方程的引用被推到下面一行。我想弄清楚的是如何发送
+\frac{M^2_\infty}{Re}\mu\left(\frac{\partial u}{\partial r}\right)^2
到另一行,使其与等号对齐,但不要获得其自己的等式引用。
有任何想法吗?
答案1
使用split
环境,它的工作原理如下align
\begin{subequations}
\begin{align}
\rho\left(u\frac{\partial u}{\partial x}+v\frac{\partial u}{\partial r}\right)
&= -\frac{\partial P}{\partial x} +
\frac{M^2_\infty}{Re}\frac{1}{r}\frac{\partial}{\partial r}\left(\mu
r\frac{\partial u}{\partial r}\right)\\
\begin{split}
\rho\left(u\frac{\partial h}{\partial x} + v \frac{\partial h}{\partial r}
\right) &= \rho \left( u\frac{\partial P}{\partial x} + v
\frac{\partial P}{\partial r} \right) \\
&\quad{}+\frac{M^2_\infty}{Re\dot Pr} \frac{1}{r}\frac{\partial}{\partial r}
\left(\mu r\frac{\partial h}{\partial r} \right) + \frac{M^2_\infty}{Re} \mu
\left( \frac{\partial u}{\partial r}\right)^2
\end{split}
\end{align}
\end{subequations}