我想通过等号对齐来输入以下等式,但是它似乎太长了:
\begin{align*}\prod_{z^n=-1}(w_1(z)^n+1)
&=& \prod_{l=0}^{l_0}(w_1(e^{\frac{(2l+1)\pi i}{n}})^n+1)\prod_{l=l_0+1}^{l_1}(w_1(e^{\frac{(2l+1)\pi i}{n}})^n+1)\times\prod_{l=l_1+1}^{n-1}(w_1(e^{\frac{(2l+1)\pi i}{n}})^n+1)\\
&=& \prod_{l=0}^{l_0}(w_1(e^{\frac{(2l+1)\pi i}{n}})^n+1)\prod_{l=l_0+1}^{l_1}(w_1(e^{\frac{(2l+1)\pi i}{n}})^{-n}+1)\times\prod_{l=l_1+1}^{n-1}(w_1(e^{\frac{(2l+1)\pi i}{n}})^n+1)\prod_{l=l_0+1}^{l_1}(w_1(e^{\frac{(2l+1)\pi i}{n}})^n)
\end{align*}
有人能帮帮我吗?非常感谢!
答案1
另一种方法:
\documentclass[preview,border=12pt]{standalone}
\usepackage{mathtools}
\begin{document}
\abovedisplayskip=0pt\relax
\begin{align*}
\prod_{z^n=-1}(w_1(z)^n+1)
&=\!
\begin{aligned}[t]
&\prod_{l=0}^{l_0}(w_1(e^{\frac{(2l+1)\pi i}{n}})^n+1)
\prod_{l=l_0+1}^{l_1}(w_1(e^{\frac{(2l+1)\pi i}{n}})^n+1) \\
&\rule{10cm}{0pt}\mathllap{\times\prod_{l=l_1+1}^{n-1}(w_1(e^{\frac{(2l+1)\pi i}{n}})^n+1)}
\end{aligned} \\
&=\!
\begin{aligned}[t]
&\prod_{l=0}^{l_0}(w_1(e^{\frac{(2l+1)\pi i}{n}})^n+1)
\prod_{l=l_0+1}^{l_1}(w_1(e^{\frac{(2l+1)\pi i}{n}})^{-n}+1) \\
&\rule{10cm}{0pt}\mathllap{\times\prod_{l=l_1+1}^{n-1}(w_1(e^{\frac{(2l+1)\pi i}{n}})^n+1)
\prod_{l=l_0+1}^{l_1}(w_1(e^{\frac{(2l+1)\pi i}{n}})^n)}
\end{aligned}
\end{align*}
\end{document}
注意:\!
由于aligned
在为什么在“aligned”环境的开头有一个 \, 空格?。
答案2
您可以使用multlined
来自mathtools 包。
\documentclass[11pt]{article}
\usepackage{mathtools}
\begin{document}
\begin{align*}\prod_{z^n=-1}(w_1(z)^n+1)&=
\begin{multlined}[t]
\prod_{l=0}^{l_0}(w_1(e^{\frac{(2l+1)\pi i}{n}})^n+1)
\prod_{l=l_0+1}^{l_1}(w_1(e^{\frac{(2l+1)\pi i}{n}})^n+1) \\ \times\prod_{l=l_1+1}^{n-1}(w_1(e^{\frac{(2l+1)\pi i}{n}})^n+1)
\end{multlined} \\ &=
\begin{multlined}[t]
\prod_{l=0}^{l_0}(w_1(e^{\frac{(2l+1)\pi i}{n}})^n+1)
\prod_{l=l_0+1}^{l_1}(w_1(e^{\frac{(2l+1)\pi i}{n}})^{-n}+1) \\ \times\prod_{l=l_1+1}^{n-1}(w_1(e^{\frac{(2l+1)\pi i}{n}})^n+1)
\prod_{l=l_0+1}^{l_1}(w_1(e^{\frac{(2l+1)\pi i}{n}})^n)
\end{multlined}
\end{align*}
\end{document}
您可能需要更改换行符的位置,具体取决于字体大小、页面宽度等。
答案3
如果太长,你必须把线分成两段
\documentclass{article}
\usepackage{amsmath}
\begin{document}
\begin{align*}
\prod_{z^n=-1}(w_1(z)^n+1) &= \prod_{l=0}^{l_0}(w_1(e^{\frac{(2l+1)\pi i}{n}})^n+1)\prod_{l=l_0+1}^{l_1}(w_1(e^{\frac{(2l+1)\pi i}{n}})^n+1)\times\\
&\qquad\times\prod_{l=l_1+1}^{n-1}(w_1(e^{\frac{(2l+1)\pi i}{n}})^n+1)\\
&= \prod_{l=0}^{l_0}(w_1(e^{\frac{(2l+1)\pi i}{n}})^n+1)\prod_{l=l_0+1}^{l_1}(w_1(e^{\frac{(2l+1)\pi i}{n}})^{-n}+1)\times\\
&\qquad\times\prod_{l=l_1+1}^{n-1}(w_1(e^{\frac{(2l+1)\pi i}{n}})^n+1)\prod_{l=l_0+1}^{l_1}(w_1(e^{\frac{(2l+1)\pi i}{n}})^n)
\end{align*}
\end{document}