我使用下面的乳胶写下公式,但是它看起来有点混乱,特别是公式 1。有什么建议可以使它更专业吗?
\documentclass{minimal}
\usepackage{etex}
\usepackage{amsmath, amssymb, proof} % mathabx,
\begin{document}
\begin{equation}\label{utilityv}
\begin{array}{rcl}
U(a)& =& w_1*\frac{Ur_{Max}(s)-a.r}{Ur_{Max}(s)-Ur_{Min}(s)}\\
&+& w_2*\frac{A{a} * AvgA(s')-Ua_{Min}(s)}{Ua_{Max}(s)-Ua_{Min}(s)}\\
&+& w_3*\frac{Uc_{Max}(s)-(C{a}+AvgC(s'))}{Uc_{Max}(s)-Uc_{Min}(s)}
\end{array}
\end{equation}
with
\begin{equation}\label{utilityruti}
\begin{array}{rcl}
Ur_{Max}(s)& = &\max\limits_{a\in MAct(s)}(a.r)\\
Ur_{Min}(s) &=& \min\limits_{a\in MAct(s)}(a.r)\\
Ua_{Max}(s)& = &\max\limits_{a\in MAct(s)}(A(a) * AvgA(s'))\\
Ua_{Min}(s) &=& \min\limits_{a\in MAct(s)}(A(a) * AvgA(s'))\\
Uc_{Max}(s) &=& \max\limits_{a\in MAct(s)}(C(a)+AvgC(s'))\\
Uc_{Min} (s) &=& \min\limits_{a\in MAct(s)}(C{a}+AvgC(s'))
\end{array}
\end{equation}
\end{document}
答案1
以下是一些选择
在这个选项中我
- 替换
*
为\cdot
- 引入
\DeclareMathOperator
和Avg
,Mact
将其改为\mathcal{M}
- 为 制定了新命令
Max
,并且Min
- 将对齐的环境更改
aligned
为array
另外一个选择:
我在这个选项上采取了更多的自由,并且对你的符号进行了大量修改 - 就我个人而言,我发现U^{(r)}
它比更容易阅读Ur
,但这只是我的观点。
这是完整的代码,看看你怎么想!
% arara: pdflatex
% !arara: indent: {overwrite: yes}
\documentclass{article}
\usepackage{amsmath}
\DeclareMathOperator{\Avg}{Avg}
\DeclareMathOperator{\Mact}{\mathcal{M}}
\newcommand{\Max}{\textnormal{Max}}
\newcommand{\Min}{\textnormal{Min}}
\begin{document}
\section*{Option 1}
\begin{equation}
\begin{aligned}
U(a) & = w_1\cdot\frac{Ur_{\Max}(s)-a.r}{Ur_{\Max}(s)-Ur_{\Min}(s)} \\
& \phantom{ {}=}+ w_2\cdot\frac{A(a) \cdot \Avg(A(s'))-Ua_{\Min}(s)}{Ua_{\Max}(s)-Ua_{\Min}(s)} \\
& \phantom{ {}=}+ w_3\cdot\frac{Uc_{\Max}(s)-(C(a)+\Avg(C(s')))}{Uc_{\Max}(s)-Uc_{\Min}(s)}
\end{aligned}
\end{equation}
with
\begin{equation}
\begin{aligned}
Ur_{\Max}(s) & = \max_{a\in \Mact(s)}(a.r) \\
Ur_{\Min}(s) & = \min_{a\in \Mact(s)}(a.r) \\
Ua_{\Max}(s) & = \max_{a\in \Mact(s)}(A(a) \cdot \Avg(A(s'))) \\
Ua_{\Min}(s) & = \min_{a\in \Mact(s)}(A(a) \cdot \Avg(A(s'))) \\
Uc_{\Max}(s) & = \max_{a\in \Mact(s)}(C(a)+\Avg(C(s'))) \\
Uc_{\Min} (s) & = \min_{a\in \Mact(s)}(C(a)+\Avg(C(s')))
\end{aligned}
\end{equation}
\section*{Option 2}
\begin{equation}
\begin{aligned}
U(a) & = w_1\cdot\frac{U^{(r)}_{\Max}(s)-a.r}{U^{(r)}_{\Max}(s)-U^{(r)}_{\Min}(s)} \\
& \phantom{ {}=}+ w_2\cdot\frac{A(a) \cdot \Avg(A(s'))-U^{(a)}_{\Min}(s)}{U^{(a)}_{\Max}(s)-U^{(a)}_{\Min}(s)} \\
& \phantom{ {}=}+ w_3\cdot\frac{U^{(c)}_{\Max}(s)-(C(a)+\Avg(C(s')))}{U^{(c)}_{\Max}(s)-U^{(c)}_{\Min}(s)}
\end{aligned}
\end{equation}
with
\begin{equation}
\begin{aligned}
U^{(r)}_{\Max}(s) & = \max_{a\in \Mact(s)}(a.r) \\
U^{(r)}_{\Min}(s) & = \min_{a\in \Mact(s)}(a.r) \\
U^{(a)}_{\Max}(s) & = \max_{a\in \Mact(s)}(A(a) \cdot \Avg(A(s'))) \\
U^{(a)}_{\Min}(s) & = \min_{a\in \Mact(s)}(A(a) \cdot \Avg(A(s'))) \\
U^{(c)}_{\Max}(s) & = \max_{a\in \Mact(s)}(C(a)+\Avg(C(s'))) \\
U^{(c)}_{\Min} (s) & = \min_{a\in \Mact(s)}(C(a)+\Avg(C(s')))
\end{aligned}
\end{equation}
\end{document}