如何让配方看起来更专业

如何让配方看起来更专业

我使用下面的乳胶写下公式,但是它看起来有点混乱,特别是公式 1。有什么建议可以使它更专业吗?

\documentclass{minimal}
\usepackage{etex}
\usepackage{amsmath, amssymb, proof} % mathabx,
\begin{document}
\begin{equation}\label{utilityv}
\begin{array}{rcl}
U(a)& =& w_1*\frac{Ur_{Max}(s)-a.r}{Ur_{Max}(s)-Ur_{Min}(s)}\\
&+& w_2*\frac{A{a} * AvgA(s')-Ua_{Min}(s)}{Ua_{Max}(s)-Ua_{Min}(s)}\\
&+& w_3*\frac{Uc_{Max}(s)-(C{a}+AvgC(s'))}{Uc_{Max}(s)-Uc_{Min}(s)}
\end{array}
\end{equation}
with
\begin{equation}\label{utilityruti}
\begin{array}{rcl}
Ur_{Max}(s)& = &\max\limits_{a\in MAct(s)}(a.r)\\
Ur_{Min}(s) &=& \min\limits_{a\in MAct(s)}(a.r)\\
Ua_{Max}(s)& = &\max\limits_{a\in MAct(s)}(A(a) * AvgA(s'))\\
Ua_{Min}(s) &=& \min\limits_{a\in MAct(s)}(A(a) * AvgA(s'))\\
Uc_{Max}(s) &=& \max\limits_{a\in MAct(s)}(C(a)+AvgC(s'))\\
Uc_{Min} (s) &=& \min\limits_{a\in MAct(s)}(C{a}+AvgC(s'))

\end{array}
\end{equation}
\end{document}

在此处输入图片描述

答案1

以下是一些选择

截屏

在这个选项中我

  • 替换*\cdot
  • 引入\DeclareMathOperatorAvgMact将其改为\mathcal{M}
  • 为 制定了新命令Max,并且Min
  • 将对齐的环境更改alignedarray

另外一个选择:

截屏

我在这个选项上采取了更多的自由,并且对你的符号进行了大量修改 - 就我个人而言,我发现U^{(r)}它比更容易阅读Ur,但这只是我的观点。

这是完整的代码,看看你怎么想!

% arara: pdflatex
% !arara: indent: {overwrite: yes}
\documentclass{article}

\usepackage{amsmath}
\DeclareMathOperator{\Avg}{Avg}
\DeclareMathOperator{\Mact}{\mathcal{M}}
\newcommand{\Max}{\textnormal{Max}}
\newcommand{\Min}{\textnormal{Min}}
\begin{document}

\section*{Option 1}
\begin{equation}
    \begin{aligned}
        U(a) & = w_1\cdot\frac{Ur_{\Max}(s)-a.r}{Ur_{\Max}(s)-Ur_{\Min}(s)}                                  \\
             & \phantom{ {}=}+ w_2\cdot\frac{A(a) \cdot \Avg(A(s'))-Ua_{\Min}(s)}{Ua_{\Max}(s)-Ua_{\Min}(s)} \\
             & \phantom{ {}=}+ w_3\cdot\frac{Uc_{\Max}(s)-(C(a)+\Avg(C(s')))}{Uc_{\Max}(s)-Uc_{\Min}(s)}     
    \end{aligned}
\end{equation}
with
\begin{equation}
    \begin{aligned}
        Ur_{\Max}(s)  & = \max_{a\in \Mact(s)}(a.r)                    \\
        Ur_{\Min}(s)  & = \min_{a\in \Mact(s)}(a.r)                    \\
        Ua_{\Max}(s)  & = \max_{a\in \Mact(s)}(A(a) \cdot \Avg(A(s'))) \\
        Ua_{\Min}(s)  & = \min_{a\in \Mact(s)}(A(a) \cdot \Avg(A(s'))) \\
        Uc_{\Max}(s)  & = \max_{a\in \Mact(s)}(C(a)+\Avg(C(s')))       \\
        Uc_{\Min} (s) & = \min_{a\in \Mact(s)}(C(a)+\Avg(C(s')))       
    \end{aligned}
\end{equation}
\section*{Option 2}
\begin{equation}
    \begin{aligned}
        U(a) & = w_1\cdot\frac{U^{(r)}_{\Max}(s)-a.r}{U^{(r)}_{\Max}(s)-U^{(r)}_{\Min}(s)}                                  \\
             & \phantom{ {}=}+ w_2\cdot\frac{A(a) \cdot \Avg(A(s'))-U^{(a)}_{\Min}(s)}{U^{(a)}_{\Max}(s)-U^{(a)}_{\Min}(s)} \\
             & \phantom{ {}=}+ w_3\cdot\frac{U^{(c)}_{\Max}(s)-(C(a)+\Avg(C(s')))}{U^{(c)}_{\Max}(s)-U^{(c)}_{\Min}(s)}     
    \end{aligned}
\end{equation}
with
\begin{equation}
    \begin{aligned}
        U^{(r)}_{\Max}(s)  & = \max_{a\in \Mact(s)}(a.r)                    \\
        U^{(r)}_{\Min}(s)  & = \min_{a\in \Mact(s)}(a.r)                    \\
        U^{(a)}_{\Max}(s)  & = \max_{a\in \Mact(s)}(A(a) \cdot \Avg(A(s'))) \\
        U^{(a)}_{\Min}(s)  & = \min_{a\in \Mact(s)}(A(a) \cdot \Avg(A(s'))) \\
        U^{(c)}_{\Max}(s)  & = \max_{a\in \Mact(s)}(C(a)+\Avg(C(s')))       \\
        U^{(c)}_{\Min} (s) & = \min_{a\in \Mact(s)}(C(a)+\Avg(C(s')))       
    \end{aligned}
\end{equation}
\end{document}

相关内容