我尝试使用\resizebox
幻灯片来适应表格,但遇到了一些错误。请帮我解决这个问题。
\documentclass{beamer}
\usepackage{graphicx}
\usepackage[labelsep=quad,indention=10pt]{subfig}
\usepackage{tikz}
\usetikzlibrary{matrix,chains,positioning,decorations.pathreplacing,arrows,calc,}
\usetikzlibrary{decorations.markings}
\usepackage{booktabs}% http://ctan.org/pkg/booktabs
\usepackage{array}% http://ctan.org/pkg/array
\usepackage{amsmath,amsthm,relsize}
\usepackage{adjustbox}
\def \symstalinear{
$f(x) =
\begin{cases}
-1, & \quad \hfill x<-1.\\
\phantom{-}x, & \quad \hfill -1 \leq x \leq1\\
\phantom{-}1, & \quad \hfill x>1
\end{cases}$
}
\def \hardlimit{
$f(x) = \begin{cases}
0 &\quad \hfill x<0\\
1 &\quad \hfill x \geq 0\\
\end{cases}
$
}
\begin{document}
\frame{
\resizebox{width=\textwidth}{height=\textheight}{
\begin{table}[h!]
\begin{center}
\begin{tabular}{ l >{$}c<{$} >{$}c<{$}}
\toprule
\textbf{Function} & \multicolumn{1}{c}{\textbf{Definition}} & \multicolumn{1}{c}{\textbf{Range}} \\
\midrule
Linear & f(x)=x & (-\infty,\infty) \\[2ex]
Log-sigmoid & \dfrac{1}{1+e^{-x}}&(0,1)\\[3ex]
Hyperbolic Tangent Sigmoid & \dfrac{e^x-e^{-x}}{e^x+e^{-x}}&(-1,1)\\[3ex]
Symmetric Saturating Linear & $\symstalinear$ & [-1,1] \\[3ex]
Hard limit & $\hardlimit$ &[0,1]\\
\bottomrule
\end{tabular}
\end{center}
\caption{Definitons of activation function}
\label{tbl:def of act func}
\end{table}%
}
}
\end{document}
答案1
该命令对于您的 \resizebox 来说是错误的。应该是
\resizebox{xxcm}{!} { % ! keep the aspectratio with xx width, no need to use width=xx.
\begin{tabular}...
\end{tabular}
}
\scalebox
graphicx 也同样有效。
\scalebox{0.7}{
\begin{tabular}...
\end{tabular}
}
代码
\documentclass{beamer}
\usepackage{graphicx}
\usepackage[labelsep=quad,indention=10pt]{subfig}
%\usepackage{tikz}
%\usetikzlibrary{matrix,chains,positioning,decorations.pathreplacing,arrows,calc,}
%\usetikzlibrary{decorations.markings}
\usepackage{booktabs}% http://ctan.org/pkg/booktabs
\usepackage{array}% http://ctan.org/pkg/array
\usepackage{amsmath,amsthm,relsize}
%\usepackage{adjustbox} % This seems to cause a problem too.
\def\symstalinear{%
$f(x) =
\begin{cases}
-1, & \quad \hfill x<-1.\\
\phantom{-}x, & \quad \hfill -1 \leq x \leq1\\
\phantom{-}1, & \quad \hfill x>1
\end{cases}$
}
\def\hardlimit{%
$f(x) = \begin{cases}
0 &\quad \hfill x<0\\
1 &\quad \hfill x \geq 0
\end{cases}
$
}
\begin{document}
\frame{
\begin{table}[h!]
\begin{center}
\resizebox{\textwidth}{!}{
\begin{tabular}{ l >{$}c<{$} >{$}c<{$}}
\toprule
\textbf{Function} & \multicolumn{1}{c}{\textbf{Definition}} & \multicolumn{1}{c}{\textbf{Range}} \\
\midrule
Linear & f(x)=x & (-\infty,\infty) \\[2ex]
Log-sigmoid & \dfrac{1}{1+e^{-x}}&(0,1)\\[3ex]
Hyperbolic Tangent Sigmoid & \dfrac{e^x-e^{-x}}{e^x+e^{-x}}&(-1,1)\\[3ex]
Symmetric Saturating Linear & $\symstalinear$ & [-1,1] \\[3ex]
Hard limit & $\hardlimit$ &[0,1]\\
\bottomrule
\end{tabular}
}
\end{center}
\caption{Definitons of activation function}
\label{tbl:def of act func}
\end{table}%
}
\end{document}