我试图对齐以下代码每行开头的两个等号和减号,但无论我做什么,都不起作用。
$C_{n}$ = $ \dfrac{1}{4\pi{i}} $ $ \displaystyle\int^\pi_{-\pi} x^2e^{ix({1-n})}\ dx $ $ - \dfrac{1}{4\pi{i}} $ $ \displaystyle\int^\pi_{-\pi} x^2e^{{-ix}({1+n})}\ dx $
\bigskip $ = \dfrac{1}{4\pi i}\Bigg[ \bigg[\dfrac {x^2ie^{-i(n-1)x}}{n-1} \bigg]_{-\pi}^\pi - \displaystyle\int^\pi_{-\pi} \dfrac{2xie^{-i(n-1)x}}{n-1} \ dx \Bigg] $
\bigskip $ - \dfrac{1}{4\pi i}\Bigg[ \bigg[\dfrac {x^2ie^{-i(n+1)x}}{n+1} \bigg]_{-\pi}^\pi - \displaystyle\int^\pi_{-\pi} \dfrac {2xie^{-i(n+1)x}} {n+1} \ dx \Bigg] $
答案1
可能有更好的方法可以做到这一点,即根据align
环境完全重构您的答案(见下文),但这个答案对您最初的尝试的影响最小。本质上,我\phantom
在第二行和第三行的开头添加了一个。
\documentclass{letter}
\usepackage{amsmath}
\begin{document}
$C_{n}$ = $ \dfrac{1}{4\pi{i}} $ $ \displaystyle\int^\pi_{-\pi} x^2e^{ix({1-n})}\ dx $ $ - \dfrac{1}{4\pi{i}} $ $ \displaystyle\int^\pi_{-\pi} x^2e^{{-ix}({1+n})}\ dx $
\bigskip $\phantom{C_{n}} = \dfrac{1}{4\pi i}\Bigg[ \bigg[\dfrac {x^2ie^{-i(n-1)x}}{n-1} \bigg]_{-\pi}^\pi - \displaystyle\int^\pi_{-\pi} \dfrac{2xie^{-i(n-1)x}}{n-1} \ dx \Bigg] $
\bigskip $\phantom{C_{n}} - \dfrac{1}{4\pi i}\Bigg[ \bigg[\dfrac {x^2ie^{-i(n+1)x}}{n+1} \bigg]_{-\pi}^\pi - \displaystyle\int^\pi_{-\pi} \dfrac {2xie^{-i(n+1)x}} {n+1} \ dx \Bigg] $
\end{document}
以下是一种实现此操作的方法align
:
\documentclass{letter}
\usepackage{amsmath}
\begin{document}
\begin{align}
C_{n} &= \dfrac{1}{4\pi{i}} \displaystyle\int^\pi_{-\pi} x^2e^{ix({1-n})}\ dx - \dfrac{1}{4\pi{i}} \displaystyle\int^\pi_{-\pi} x^2e^{{-ix}({1+n})}\ dx
\\[2ex]
&= \dfrac{1}{4\pi i}\Bigg[ \bigg[\dfrac {x^2ie^{-i(n-1)x}}{n-1} \bigg]_{-\pi}^\pi - \displaystyle\int^\pi_{-\pi} \dfrac{2xie^{-i(n-1)x}}{n-1} \ dx \Bigg]
\\[2ex]
&- \dfrac{1}{4\pi i}\Bigg[ \bigg[\dfrac {x^2ie^{-i(n+1)x}}{n+1} \bigg]_{-\pi}^\pi - \displaystyle\int^\pi_{-\pi} \dfrac {2xie^{-i(n+1)x}} {n+1} \ dx \Bigg]
\end{align}
\end{document}