chapterbib
为每个章节生成参考书目。但makeidx
似乎在创建索引时没有考虑文件中的内容bbl
。因此,一旦添加参考书目,索引条目就会指向错误的页码。我该如何阻止这种情况发生?hyperref
似乎工作正常。
编辑以添加一个示例,该示例很大,因为需要超过一页长的参考书目才能导致此问题:
这些文件位于同一文件夹中:
thesis.tex
intro.tex
theory.tex
Ref.bib
thesis.tex 的内容:
\documentclass[DIV=12, toc=listof, paper=A4]{scrreprt}
\usepackage[inner=3cm,outer=2.5cm,bottom=3cm]{geometry}
\usepackage[super,sort&compress]{natbib}
\usepackage{natmove}
\usepackage[sectionbib]{chapterbib}
\usepackage{graphicx}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{amsfonts}
\usepackage{fancyhdr}
\usepackage{setspace}
\usepackage{lmodern}
\usepackage[hypcap]{caption}
\usepackage{makeidx}
\usepackage[hidelinks]{hyperref}
\makeindex
\pagestyle{fancyplain}
\setcitestyle{comma}
% % Math abbreviations end
%\renewcommand{\familydefault}{\sfdefault}
\renewcommand{\sectfont}{\normalfont\bfseries}
%\setkomafont{disposition}{\rmfamily}
\begin{document}
\setstretch{1.5}
\tableofcontents
\clearpage
\pagenumbering{arabic}
\include{intro}
\clearpage
\include{theory}
\clearpage
\phantomsection
\clearpage
\addcontentsline{toc}{chapter}{\indexname}
\printindex
\end{document}
intro.tex 的内容:
\chapter{Introductions}
\newpage
\index{spin--wave} (SWs) occurred over fifty years ago \cite{Bloch1930}.
\cite{Chumak2010, Klos2013}.
\cite{Kim2010}.
\newpage
magnetoresistance \cite{Baibich1988, Binasch1989}, \cite{Inoue1999}, \cite{Figotin2003} \cite{Carcia1985, Carcia1988}. modulation. \index{spin--wave} \cite{Choi2007} along with very efficient signal transmission and logical operations, have been studied in isolated and dipole coupled ferromagnetic nanodisks.
%\section{The Landau--Lifshitz--Gilbert (LLG) equation}
\index{Landau--Lifshitz--Gilbert equation|see{LLG equation}} \index{LLG equation}
the \index{Larmor!precession} \textit{Larmor precession}. The the \index{damping!Gilbert} \index{Gilbert damping} \textit{Gilbert damping}.
\newpage
\newpage
A\index{LLG equation} \textit{LLG equation} \cite{Landau1935, Gilbert2004}. \cite{Donahue1999} adiabatically \cite{Antos2008}.
\cite{Berger1996}, $e$ \cite{Slonczewski1996}, \cite{Li2003}, \cite{Lee2006} \cite{Berkov2005}. \cite{Xiao2004}. Eq.~\eqref{eq:llg2} \cite{Donahue1999}
%\bibliographystyle{naturemag}
\bibliographystyle{aipnum4-1}
\begin{flushleft}
\bibliography{Ref}
\end{flushleft}
\addcontentsline{toc}{section}{\numberline{}Bibliography}
theory.tex 的内容:
\chapter{Theoretical Background}
\section{Ferromagnetism \index{ferromagnetism} \label{sec:ferro}}
a \index{magnetic!field} \textit{magnetic field} \cite{Kumar2013},
\bibliographystyle{aipnum4-1}
\begin{flushleft}
\bibliography{Ref}
\end{flushleft}
\addcontentsline{toc}{section}{\numberline{}Bibliography}
Ref.bib 的内容
% This file was created with JabRef 2.9.2.
% Encoding: Cp1252
@ARTICLE{Antos2008,
author = {Roman Antos and YoshiChika Otani and Junya Shibata},
title = {Magnetic Vortex Dynamics},
journal = {J. Phys. Soc. Jpn.},
year = {2008},
volume = {77},
pages = {031004},
number = {3},
doi = {10.1143/JPSJ.77.031004},
numpages = {8},
publisher = {The Physical Society of Japan},
timestamp = {2014.01.08},
url = {http://jpsj.ipap.jp/link?JPSJ/77/031004/}
}
@ARTICLE{Baibich1988,
author = {Baibich, M. N. and Broto, J. M. and Fert, A. and Van Dau, F. Nguyen
and Petroff, F. and Etienne, P. and Creuzet, G. and Friederich, A.
and Chazelas, J.},
title = {Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices},
journal = {Phys. Rev. Lett.},
year = {1988},
volume = {61},
pages = {2472--2475},
month = {Nov},
doi = {10.1103/PhysRevLett.61.2472},
issue = {21},
numpages = {0},
publisher = {American Physical Society},
timestamp = {2014.01.08},
url = {http://link.aps.org/doi/10.1103/PhysRevLett.61.2472}
}
@ARTICLE{Berger1996,
author = {Berger, L.},
title = {Emission of spin waves by a magnetic multilayer traversed by a current},
journal = {Phys. Rev. B},
year = {1996},
volume = {54},
pages = {9353--9358},
month = {Oct},
doi = {10.1103/PhysRevB.54.9353},
issue = {13},
publisher = {American Physical Society},
timestamp = {2014.01.08},
url = {http://link.aps.org/doi/10.1103/PhysRevB.54.9353}
}
@ARTICLE{Berkov2005,
author = {Dmitri V. Berkov and Natalia L. Gorn},
title = {Stochastic dynamic simulations of fast remagnetization processes:
recent advances and applications },
journal = {J. Magn. Magn. Mater.},
year = {2005},
volume = {290--291},
pages = {442--448},
number = {1},
note = {\textit{Proceedings of the Joint European Magnetic Symposia (JEMS'
04)}},
abstract = {Numerical simulations of fast remagnetization processes using stochastic
dynamics are widely used to study various magnetic systems. In this
paper, we first address several crucial methodological problems of
such simulations: (i) the influence of finite-element discretization
on simulated dynamics, (ii) choice between Ito and Stratonovich stochastic
calculi by the solution of micromagnetic stochastic equations of
motion and (iii) non-trivial correlation properties of the random
(thermal) field. Next, we discuss several examples to demonstrate
the great potential of the Langevin dynamics for studying fast remagnetization
processes in technically relevant applications: we present numerical
analysis of equilibrium magnon spectra in patterned structures, study
thermal noise effects on the magnetization dynamics of nanoelements
in pulsed fields and show some results for a remagnetization dynamics
induced by a spin-polarized current. },
doi = {http://dx.doi.org/10.1016/j.jmmm.2004.11.569},
issn = {0304-8853},
keywords = {Micromagnetic calculation},
timestamp = {2013.12.31},
url = {http://www.sciencedirect.com/science/article/pii/S0304885304018323}
}
@ARTICLE{Binasch1989,
author = {Binasch, G. and Gr\"unberg, P. and Saurenbach, F. and Zinn, W.},
title = {Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic
interlayer exchange},
journal = {Phys. Rev. B},
year = {1989},
volume = {39},
pages = {4828--4830},
month = {Mar},
doi = {10.1103/PhysRevB.39.4828},
issue = {7},
numpages = {0},
publisher = {American Physical Society},
timestamp = {2014.01.08},
url = {http://link.aps.org/doi/10.1103/PhysRevB.39.4828}
}
@ARTICLE{Bloch1930,
author = {Bloch, F.},
title = {Zur Theorie des Ferromagnetismus},
journal = {Z. Physik},
year = {1930},
volume = {61},
pages = {206},
timestamp = {2014.01.07}
}
@ARTICLE{Carcia1988,
author = {Carcia, P. F.},
title = {Perpendicular magnetic anisotropy in Pd/Co and Pt/Co thin--film layered
structures},
journal = {J. Appl. Phys.},
year = {1988},
volume = {63},
pages = {5066--5073},
number = {10},
doi = {http://dx.doi.org/10.1063/1.340404},
timestamp = {2014.01.07},
url = {http://scitation.aip.org/content/aip/journal/jap/63/10/10.1063/1.340404}
}
@ARTICLE{Carcia1985,
author = {Carcia, P. F. and Meinhaldt, A. D. and Suna, A.},
title = {Perpendicular magnetic anisotropy in Pd/Co thin film layered structures},
journal = {Appl. Phys. Lett.},
year = {1985},
volume = {47},
pages = {178--180},
number = {2},
doi = {http://dx.doi.org/10.1063/1.96254},
timestamp = {2014.01.07},
url = {http://scitation.aip.org/content/aip/journal/apl/47/2/10.1063/1.96254}
}
@ARTICLE{Choi2007,
author = {Choi, Sangkook and Lee, Ki-Suk and Guslienko, Konstantin Yu. and
Kim, Sang-Koog},
title = {Strong Radiation of Spin Waves by Core Reversal of a Magnetic Vortex
and Their Wave Behaviors in Magnetic Nanowire Waveguides},
journal = {Phys. Rev. Lett.},
year = {2007},
volume = {98},
pages = {087205},
month = {Feb},
doi = {10.1103/PhysRevLett.98.087205},
issue = {8},
numpages = {4},
publisher = {American Physical Society},
timestamp = {2014.01.08},
url = {http://link.aps.org/doi/10.1103/PhysRevLett.98.087205}
}
@ARTICLE{Chumak2010,
author = {Chumak, Andrii V. and Tiberkevich, Vasil S. and Karenowska, Alexy
D. and Serga, Alexander A. and Gregg, John F. and Slavin, Andrei
N. and Hillebrands, Burkard},
title = {All-linear time reversal by a dynamic artificial crystal},
journal = {Nat. Commun.},
year = {2010},
volume = {1},
pages = {141},
doi = {10.1038/ncomms1142},
timestamp = {2013.05.03}
}
@BOOK{Donahue1999,
title = {OOMMF User's Guide, Version 1.0},
publisher = {Tech. Rep. NIS--TIR 6376, National Institute of Standards and Technology,
Gaithersburg, MD},
year = {1999},
author = {M. Donahue and D. G. Porter},
date = {2002},
eprint = {http://math.nist.gov/oommf/doc/userguide12a3/userguide/},
organization = {NIST Interagency Report No. 6376},
timestamp = {2014.01.08},
version = {1.2a3}
}
@ARTICLE{Figotin2003,
author = {Figotin, A. and Vitebskiy, I.},
title = {Electromagnetic unidirectionality in magnetic photonic crystals},
journal = {Phys. Rev. B},
year = {2003},
volume = {67},
pages = {165210},
month = {Apr},
doi = {10.1103/PhysRevB.67.165210},
issue = {16},
numpages = {20},
publisher = {American Physical Society},
timestamp = {2014.01.08},
url = {http://link.aps.org/doi/10.1103/PhysRevB.67.165210}
}
@ARTICLE{Gilbert2004,
author = {Gilbert, T.L.},
title = {A phenomenological theory of damping in ferromagnetic materials},
journal = {IEEE Trans. Mag.},
year = {2004},
volume = {40},
pages = {3443--3449},
number = {6},
doi = {10.1109/TMAG.2004.836740},
issn = {0018-9464},
keywords = {damping;eddy current losses;ferromagnetic materials;damping theory;ferromagnetic
damping;ferromagnetic materials;magnetic core memories;magnetic domains;magnetic
losses;magnetic recording;magnetization processes;phenomenological
theory;Damping;Eddy currents;Energy loss;Equations;Extraterrestrial
measurements;Lattices;Magnetic domains;Magnetic field induced strain;Magnetic
materials;Magnetization;65;Ferromagnetic damping;ferromagnetic materials;magnetic
core memories;magnetic domains;magnetic losses;magnetic recording;magnetization
processes},
timestamp = {2014.01.08}
}
@ARTICLE{Inoue1999,
author = {Inoue, Mitsuteru and Arai, Ken\'ichi and Fujii, Toshitaka and
Abe, Masanori},
title = {One--dimensional magnetophotonic crystals},
journal = {J. Appl. Phys.},
year = {1999},
volume = {85},
pages = {5768--5770},
number = {8},
doi = {http://dx.doi.org/10.1063/1.370120},
timestamp = {2014.01.07},
url = {http://scitation.aip.org/content/aip/journal/jap/85/8/10.1063/1.370120}
}
@ARTICLE{Klos2013,
author = {K{\l}os, J. W. and Kumar, D. and Krawczyk, M. and Barman, A.},
title = {Magnonic Band Engineering by Intrinsic and Extrinsic Mirror Symmetry
Breaking in Antidot Spin-Wave Waveguides},
journal = {Sci. Rep.},
year = {2013},
volume = {3},
pages = {2444},
month = aug,
doi = {10.1038/srep02444},
publisher = {Macmillan Publishers Limited. All rights reserved},
timestamp = {2013.08.21}
}
@ARTICLE{Kim2010,
author = {Sang-Koog Kim},
title = {Micromagnetic computer simulations of spin waves in nanometre-scale
patterned magnetic elements},
journal = {J. Phys. D: Appl. Phys.},
year = {2010},
volume = {43},
pages = {264004},
number = {26},
abstract = {Current needs for further advances in the nanotechnologies of information-storage
and -processing devices have attracted a great deal of interest in
spin (magnetization) dynamics in nanometre-scale patterned magnetic
elements. For instance, the unique dynamic characteristics of non-uniform
magnetic microstructures such as various types of domain walls, magnetic
vortices and antivortices, as well as spin wave dynamics in laterally
restricted thin-film geometries, have been at the centre of extensive
and intensive researches. Understanding the fundamentals of their
unique spin structure as well as their robust and novel dynamic properties
allows us to implement new functionalities into existing or future
devices. Although experimental tools and theoretical approaches are
effective means of understanding the fundamentals of spin dynamics
and of gaining new insights into them, the limitations of those same
tools and approaches have left gaps of unresolved questions in the
pertinent physics. As an alternative, however, micromagnetic modelling
and numerical simulation has recently emerged as a powerful tool
for the study of a variety of phenomena related to spin dynamics
of nanometre-scale magnetic elements. In this review paper, I summarize
the recent results of simulations of the excitation and propagation
and other novel wave characteristics of spin waves, highlighting
how the micromagnetic computer simulation approach contributes to
an understanding of spin dynamics of nanomagnetism and considering
some of the merits of numerical simulation studies. Many examples
of micromagnetic modelling for numerical calculations, employing
various dimensions and shapes of patterned magnetic elements, are
given. The current limitations of continuum micromagnetic modelling
and of simulations based on the LandauâLifshitzâGilbert equation
of motion of magnetization are also discussed, along with further
research directions for spin-wave studies.},
timestamp = {2014.01.08},
url = {http://stacks.iop.org/0022-3727/43/i=26/a=264004}
}
@ARTICLE{Kumar2013,
author = {D. Kumar and P. Sabareesan and W. Wang and H. Fangohr and A. Barman},
title = {Effect of hole shape on spin-wave band structure in one-dimensional
magnonic antidot waveguide},
journal = {J. Appl. Phys.},
year = {2013},
volume = {114},
pages = {023910},
number = {2},
eid = {023910},
doi = {10.1063/1.4813228},
keywords = {band structure; dispersion relations; magnons; quantum dots; spin
waves},
numpages = {6},
publisher = {AIP},
timestamp = {2014.01.08},
url = {http://link.aip.org/link/?JAP/114/023910/1}
}
@ARTICLE{Landau1935,
author = {L. D. Landau and E. M. Lifshitz},
title = {On the theory of the dispersion of magnetic permeability in ferromagnetic
bodies},
journal = {Phys. Zeitsch. der Sow.},
year = {1935},
volume = {8},
pages = {153},
timestamp = {2013.05.03}
}
@ARTICLE{Lee2006,
author = {Lee, Kyung-Jin and Dieny, Bernard},
title = {Micromagnetic investigation of the dynamics of magnetization switching
induced by a spin polarized current},
journal = {Appl. Phys. Lett.},
year = {2006},
volume = {88},
pages = {132506},
number = {13},
eid = {132506},
doi = {http://dx.doi.org/10.1063/1.2190450},
timestamp = {2014.01.01},
url = {http://scitation.aip.org/content/aip/journal/apl/88/13/10.1063/1.2190450}
}
@ARTICLE{Li2003,
author = {Li, Z. and Zhang, S.},
title = {Magnetization dynamics with a spin-transfer torque},
journal = {Phys. Rev. B},
year = {2003},
volume = {68},
pages = {024404},
month = {Jul},
doi = {10.1103/PhysRevB.68.024404},
issue = {2},
numpages = {10},
publisher = {American Physical Society},
timestamp = {2014.01.08},
url = {http://link.aps.org/doi/10.1103/PhysRevB.68.024404}
}
@ARTICLE{Slonczewski1996,
author = {J.C. Slonczewski},
title = {Current-driven excitation of magnetic multilayers },
journal = {J. Magn. Magn. Mater.},
year = {1996},
volume = {159},
pages = {L1 - L7},
number = {1â2},
doi = {http://dx.doi.org/10.1016/0304-8853(96)00062-5},
issn = {0304-8853},
timestamp = {2013.10.21},
url = {http://www.sciencedirect.com/science/article/pii/0304885396000625}
}
@ARTICLE{Xiao2004,
author = {Xiao, Jiang and Zangwill, A. and Stiles, M. D.},
title = {Boltzmann test of Slonczewskis theory of spin-transfer torque},
journal = {Phys. Rev. B},
year = {2004},
volume = {70},
pages = {172405},
month = {Nov},
doi = {10.1103/PhysRevB.70.172405},
issue = {17},
numpages = {4},
publisher = {American Physical Society},
timestamp = {2014.01.08},
url = {http://link.aps.org/doi/10.1103/PhysRevB.70.172405}
}
正常编译:
- pdflatex->论文.tex。
- bibtex -> intro.tex。
- bibtex -> 理论.tex。
- makeidx->论文.tex。
- pdfchain->论文.tex。
现在,如果您注意到索引中的“磁性!场”条目,它会显示它在第 5 页。但它应该是第 6 页。我认为这只是因为制作者忘记了在编译步骤 2 和 3 中生成的文件makeidx
中的内容。bbl
答案1
这些bibtex
步骤添加了索引发生时(运行期间)以前未知的材料pdflatex
。因此,您必须添加新的运行pdflatex
pdflatex thesis
bibtex intro
bibtex theory
bibtex ...<other chapters>...
pdflatex thesis
makeindex thesis
pdflatex thesis
另外,几天前发布的 Koma-Script 3.12 版本似乎与 不兼容chapterbib
。请注意这一点,不更新您的 Koma-Script 版本。