如何以某种方式绘制反斜杠

如何以某种方式绘制反斜杠

我知道之前有相当多关于如何排版反斜杠的问题被问到;但我正在寻找 \ 的特定位置,如下所示: 在此处输入图片描述

我试过了\diagdown,但无法将其放在G\ 下面,如屏幕截图所示。

答案1

\documentclass{article}
\usepackage{amsmath}
\newcommand\mySlash[2]{\ensuremath{%
  \!\sideset{_#1}{\!\!^#2}{\mathop\backslash}}}
\begin{document}

\Huge$x\cdot\mySlash{G}{X}$ \mySlash{G}{X}

\end{document}

在此处输入图片描述

答案2

我只需使用堆栈创建相对于反斜杠的分子和分母,然后将两部分合并在一起。

\documentclass{article}
\usepackage[usestackEOL]{stackengine}
\usepackage{calc}
\newlength\tbsw
\setlength{\tbsw}{\widthof{\textbackslash}}
\newcommand\bsfrac[2]{%
  \renewcommand\stacktype{L}%
  \renewcommand\stackalignment{r}%
  \mathop{%
  \stackunder[4pt]{\textbackslash}{$\scriptstyle #1$~}%
  \kern-\tbsw%
    \renewcommand\stackalignment{l}%
    \stackon[3pt]{\textbackslash}{~$\scriptstyle #2$}%
  }%
}
\begin{document}
The quotient (or orbit) space $\bsfrac{G}{X}$ is the set\ldots
\end{document}

在此处输入图片描述

以下是另一种选择,其反斜杠更加倾斜:

\documentclass{article}
\usepackage[usestackEOL]{stackengine}
\usepackage{graphicx}
\def\tbs{\rotatebox{30}{\textbackslash}}
\newlength\tbsw
\setlength{\tbsw}{\widthof{\tbs}}
\newcommand\bsfrac[2]{%
  \renewcommand\stacktype{L}%
  \renewcommand\stackalignment{r}%
  \mathop{%
  \stackunder[3pt]{\tbs}{$\scriptstyle #1$\ \,}%
  \kern-\tbsw%
    \renewcommand\stackalignment{l}%
    \stackon[4pt]{\tbs}{\ \,$\scriptstyle #2$}%
  }%
}
\begin{document}
The quotient (or orbit) space $\bsfrac{G}{X}$ is the set\ldots
\end{document}

在此处输入图片描述

答案3

以下是基于的答案角度分数。TikZ 的使用有点繁重,但我不知道其他方法可以做到这一点......

在此处输入图片描述

\documentclass{article}
\usepackage{tikz}
\usepackage{calc}

\newcommand*{\TextScale}{0.75}
\newcommand*{\SlashAngle}{-45}
\newcommand*{\SlashScale}{1.5}

\newlength{\NeumeratorXShift}
\newlength{\DenomiatorXShift}
\newlength{\NeumeratorYShift}
\newlength{\DenomiatorYShift}

\tikzset{Slash/.style={scale=\SlashScale, rotate=\SlashAngle}}
\tikzset{Neumerator/.style={scale=\TextScale, xshift=-\NeumeratorXShift, yshift=-\NeumeratorYShift, inner sep=0, outer sep=0}}
\tikzset{Denominator/.style={scale=\TextScale, xshift=\DenomiatorXShift, yshift=\DenomiatorYShift, inner sep=0, outer sep=0}}
\newcommand{\Sfrac}[2]{%
    \pgfmathsetlength{\NeumeratorXShift}{0.1em+0.5*\widthof{$#1$}}%
    \pgfmathsetlength{\DenomiatorXShift}{0.1em+0.5*\widthof{$#2$}}%
    \pgfmathsetlength{\NeumeratorYShift}{0.2ex+0.5*\heightof{$#1$}}%
    \pgfmathsetlength{\DenomiatorYShift}{0.2ex+0.5*\heightof{$#2$}}%
    \tikz [x=1.4ex,y=1.4ex,line width=.09ex, baseline, yshift=0.6ex] 
        \draw [Slash] (-0.45,0.0) -- (0.45,0)
        node  [Neumerator ] at (0,0) {$#1$}
        node  [Denominator] at (0,0) {$#2$};
}%

\begin{document}
     The quotient (or orbit) space $\Sfrac{G}{X}$ is the set of blablabla ...
\end{document}

答案4

模仿周围间距的解决方案\frac,但带有倾斜的分数线。

\documentclass{article}
\usepackage{graphicx}

\makeatletter
\newcommand*{\revfrac}[2]{%
  \ensuremath{%
    \mathchoice
    {\revfrac@{\displaystyle}{\textstyle}{#1}{#2}}%
    {\revfrac@{\textstyle}{\scriptstyle}{#1}{#2}}%
    {\revfrac@{\scriptstyle}{\scriptscriptstyle}{#1}{#2}}%
    {\revfrac@{\scriptscriptstyle}{\scriptscriptstyle}{#1}{#2}}%
 }%
}
\newcommand*{\revfrac@factor}{.5}
\newcommand*{\revfrac@}[4]{%
  % dimen 0: height of math axis
  \setbox0=\hbox{$#1\vcenter{}$}%
  \dimen0=\ht0 %
  %
  % box 0: numerator
  \sbox0{$#2#3\m@th$}% 
  \ifdim\dp0=\z@
  \else
    \setbox0=\hbox{\raise\dp0\box0}%
  \fi
  %
  % box 2: denominator
  \sbox2{$#2#4\m@th$}%
  \ifdim\dp2=\z@
  \else
    \setbox2=\hbox{\raise\dp2\box2}%
  \fi
  %
  % dimen 2: max. width of unrotated fraction = length of fraction line
  \ifdim\wd0>\wd2 %
    \dimen2=\wd0 %
  \else
    \dimen2=\wd2 %
  \fi
  % box 4: rotated fraction line with middle point at base line
  % dimen 4: side bearings of \frac
  % dimen 6: half of the thickness of rule with separation space
  % For getting the line separation space, an object with an depth
  % is needed to minimize the space
  \setbox4=\hbox{\kern1ex}%
  \dimen6=\wd4 %
  \sbox4{%
    $%
      #1%
      \frac{\kern\dimen2\vrule width\z@ depth\dimen6}{\kern\dimen2}%
      \m@th
    $%
  }%
  \dimen4=.5\dimexpr\wd4-\dimen2\relax
  \dimen6=\dimexpr\ht4-\dimen0-\dimen6\relax
  \setbox4=\hbox to \dimen2{\hss\lower\dimen0\copy4\hss}%
  \ht4=.2pt %
  \dp4=.2pt %
  \sbox4{\rotatebox[x=.5\wd4,y=\z@]{-30}{\copy4}}%
  %
  % output left side bearing
  \kern\dimen4 %
  % output denominator
  \dimen8=\dimexpr
    -.5\wd2 %
    +.4330127\dimexpr\revfrac@factor\ht2\relax % 0.4330127 = 0.5 * sin(60)
    +.125\wd2 % .125 = .5 * sin(30) * sin(30)
    +.5\dimen6 % 0.5 = sin(30)
    -.5\wd4 %
  \relax
  \ifdim-\dimen8>\wd2 %
    \kern\dimexpr-\dimen8-\wd2\relax
  \fi
  \raise\dimexpr
    \dimen0 %
    -\ht2 %
    -.216506351\wd2 % 0.216506351 = 1/4 sin(60)
    -.8660254\dimen6 % 0.8660254 = sin(60)
    +.25\dimexpr\revfrac@factor\ht2\relax % 0.25 = sin(30) * sin(30)
  \relax\copy2 %
  % output fraction line
  \kern\dimen8 %
  \raise\dimen0\copy4 %
  % numerator
  \dimen8=\dimexpr
    -.5\wd4 %
    +.4330127\dimexpr\revfrac@factor\ht0\relax % 0.4330127 = 0.5 * sin(60)
    +.125\wd0 % .125 = .5 * sin(30) * sin(30)
    +.5\dimen6 % 0.5 = sin(30)
    -.5\wd0 %
  \relax
  \kern\dimen8 %
  \raise\dimexpr
    \dimen0 %
    +.216506351\wd0 % 0.216506351 = 1/4 sin(60)
    +.8660254\dimen6 % 0.8660254 = sin(60)
    -.25\dimexpr\revfrac@factor\ht0\relax % 0.25 = sin(30) * sin(30)
  \relax\copy0 %
  \ifdim-\dimen8>\wd0 %
    \kern\dimexpr-\dimen8-\wd0\relax
  \fi
  % output right side bearing
  \kern\dimen4
}
\makeatother

\begin{document}
\centering
The quotient space $\revfrac{X}{G}$ is the set of \dots
\[
  X = \bigsqcup_{\bar x\in\revfrac{X}{G}} \bar x
\]
\[
  \revfrac{X}{G}
  > \textstyle \revfrac{X}{G}
  > \scriptstyle \revfrac{X}{G}
  > \scriptscriptstyle \revfrac{X}{G}
\]
\newcommand*{\fboxed}[1]{%
  \begingroup
    \setlength{\fboxsep}{0pt}%
    \setlength{\fboxrule}{.2pt}%
    \fbox{$#1$}%
  \endgroup
}
\[
  \fboxed{\revfrac{a}{b+c+d}}\;
  \fboxed{\revfrac{\fboxed{a+b+c}}{d}}\;
  \fboxed{\revfrac{\fboxed{\frac{a}{b}}}{\fboxed{\frac{c}{d}}}}
  \;\fboxed{\revfrac{\fboxed{a}}{\fboxed{b+c+d}}}
\]
\end{document}

结果

相关内容