无反定理 (任何 TeX)

无反定理 (任何 TeX)

我经常在 LaTeX 上使用定理,并定义了各种定理。但有时最好不要定义一个特定的定理,否则它只会用很长时间,例如“代数基本定理”或“毛球定理”等。我在网上找到的一份 pdf 建议使用以下代码:

\makeatletter
\newtheorem{@thmattr}[thm]{\theorem@attr}
\newenvironment{thmattr}[1]
{\def\theorem@attr{#1}\begin{@thmattr}}
{\end{@thmattr}}
\makeatother

唯一的问题是,除了需要计数器的定义thm(可以通过删除 轻松解决[thm])之外,这还为此类定理提供了一个计数器。所以我得到了“代数 1 的基本定理”,这没有意义,因为只有一个定理同名。所以问题是:我如何创建一个没有计数器的定理?

答案1

如果你有一个命名定理,最简单的方法是

\usepackage{amsthm}

\newtheorem*{HBT}{Hairy Ball Theorem}

以便

\begin{HBT}
There is no nonvanishing continuous tangent vector field on 
even dimensional $n$-spheres.
\end{HBT}

将生产出您想要的东西。

如果您有多个命名定理,那么与您发现的类似的策略将会起作用:

\newtheorem*{namedthm*}{\thistheoremname}
\newcommand{\thistheoremname}{} % initialization
\newenvironment{namedthm}[1]
  {\renewcommand{\thistheoremname}{#1}\begin{namedthm*}}
  {\end{namedthm*}}

输入将是

\begin{namedthm}{Hairy Ball Theorem}
There is no nonvanishing continuous tangent vector field on 
even dimensional $n$-spheres.
\end{namedthm}

您也可以按照通常的方式给出归因:

\begin{namedthm}{Hairy Ball Theorem}[Brouwer]
There is no nonvanishing continuous tangent vector field on 
even dimensional $n$-spheres.
\end{namedthm}

完整的示例;选择您喜欢的策略。

\documentclass{article}
\usepackage{amsthm}

\newtheorem*{HBT}{Hairy Ball Theorem}

\newtheorem*{namedthm*}{\thistheoremname}
\newcommand{\thistheoremname}{} % initialization
\newenvironment{namedthm}[1]
  {\renewcommand{\thistheoremname}{#1}\begin{namedthm*}}
  {\end{namedthm*}}

\begin{document}

\begin{HBT}
There is no nonvanishing continuous tangent vector field on 
even dimensional $n$-spheres.
\end{HBT}

\begin{namedthm}{Hairy Ball Theorem}
There is no nonvanishing continuous tangent vector field on 
even dimensional $n$-spheres.
\end{namedthm}

\begin{namedthm}{Hairy Ball Theorem}[Brouwer]
There is no nonvanishing continuous tangent vector field on 
even dimensional $n$-spheres.
\end{namedthm}

\end{document}

在此处输入图片描述

答案2

使用ntheorem,您有emptyemptybreak定理样式。名称是可选参数。这里有 4 种可能性(我不得不修补空样式,因为它不接受label separator):

        \documentclass[12pt,a4paper]{article}

        \usepackage[utf8]{inputenc}
        \usepackage[T1]{fontenc}
        \usepackage{MinionPro}
        \usepackage{amsmath}
        \usepackage[svgnames, x11names]{xcolor}
        \usepackage{framed}
        \usepackage[framed, amsmath, thmmarks]{ntheorem}%
        \newcommand*\C{\mathbf C}

        \makeatletter
        \renewtheoremstyle{empty}%
          {\item[]}%
          {\item[\theorem@headerfont \hskip\labelsep\relax ##3\theorem@separator]}
        \makeatother

        \theoremheaderfont{\upshape\scshape}
        \theorembodyfont{\itshape}

        \theoremstyle{empty}
        \theoremseparator{.\,—}
        \newtheorem{namedthm}{}
        \newframedtheorem{namedfrthm}{}
        \theoremstyle{emptybreak}
        \theoremheaderfont{\bfseries\scshape}
        \theorembodyfont{\upshape\color{DarkSeaGreen4}}
        \theoremseparator{\smallskip}
        \newtheorem{NamedThm}{}
        \newframedtheorem{NamedfrThm}{}
        %\newframedtheorem{namedfrthm}}
        \begin{document}


        \begin{namedthm}[Fundamental Theorem of Algebra]
        Every polynomial with coefficients in  $ \C $ has a root in  $ \C $.  In other words,  the field of complex numbers is algebraically closed.
        \end{namedthm}

        \begin{namedfrthm}[Fundamental Theorem of Algebra]
        Every polynomial with coefficients in  $ \C $ has a root in  $ \C $.  In other words,  the field of complex numbers is algebraically closed.
        \end{namedfrthm}

        \begin{NamedThm}[Fundamental Theorem of Algebra]
        Every polynomial with coefficients in  $ \C $ has a root in  $ \C $.  In other words,  the field of complex numbers is algebraically closed.
        \end{NamedThm}

        \begin{NamedfrThm}[Fundamental Theorem of Algebra]
        Every polynomial with coefficients in  $ \C $ has a root in  $ \C $.  In other words,  the field of complex numbers is algebraically closed.
        \end{NamedfrThm}

        \end{document}

在此处输入图片描述

相关内容