用方框或 [ 括住对齐内的多行

用方框或 [ 括住对齐内的多行

我有以下代码

\documentclass{article}
\usepackage{amsmath}

\begin{document}
\begin{alignat*}{4}
        \begin{minipage}[h!]{0\linewidth}
            \text{Let:} \end{minipage}
        && G_{\delta_r}^{\beta} &= \frac{n_1 s + n_0}{s^2 + d_1 s + d_0} = \frac{0.01956 s + 7.01}{s^2 + 0.802 s + 6.489} \\
        && step \left(G_{\delta_r}^{\beta}(s) \right) = \frac{G_{\delta_r}^{\beta}(s)}{s} &= \frac{1}{s} \cdot \frac{n_1 s + n_0}{s^2 + d_1 s + d_0} \\ 
        \\ 
        % \left[ 
        % \makebox[0\linewidth][s] {
        %   \begin{dcases}
                \makebox[0\linewidth][s]{Expanding with partial fractions:} \\
                && \frac{x_1}{s} + \frac{x_{21}s + x_{20}}{s^2 + d_1 s + d_0} &= \frac{1}{s} \cdot \frac{n_1 s + n_0}{s^2 + d_1 s + d_0} \\
                \\
                \makebox[0\linewidth][s]{Removing denominator:} \\
                && x_1(s^2 + d_1 s + d_0) + s(x_{21} s + x_{20}) &= n_1 s + n_0 \\
                \\
                \makebox[0\linewidth][s]{Has solutions:} \\
                \makebox[0\linewidth][s]{
                \begin{minipage}[h!]{0.3\linewidth} \centering
                    $x_{21} = \frac{-n_0}{d_0} = -1.08$ \end{minipage}
                \begin{minipage}[h!]{0.3\linewidth} \centering
                    $x_1 = \frac{n_0}{d_0} = 1.08$ \end{minipage} 
                \begin{minipage}[h!]{0.3\linewidth} \centering
                    $x_{20} = n_1 - \frac{n_0 d_1}{d_0} = -0.847$ \end{minipage} }
            % \end{dcases}
            % }
        \\
        \begin{minipage}[h!]{0\linewidth}
            \text{Hence:} \end{minipage} 
        && \frac{G_{\delta_r}^{\beta}(s)}{s} &= \frac{1.08}{s} - \frac{1.08s + 0.847}{s^2 + 0.8-2s + 6.489} \\
        \\
        \makebox[0\linewidth][s]{Completing the square:} \\
        && \frac{G_{\delta_r}^{\beta}(s)}{s} &= \frac{1.08}{s} - \frac{1.08s + 0.847}{(s + 0.401)^2 + 6.328} \\
        \makebox[0\linewidth][s]{Inverse Laplace:} \\
        && \mathcal{L}^{-1}\left\{ \frac{G_{\delta_r}^{\beta}(s)}{s} \right\} &=  1.08 - e^{-.401t} \left(1.08 \cos(t\sqrt{6.328}) + \frac{0.847}{\sqrt{6.328}} \sin(t\sqrt{6.328}) \right) 
    \end{alignat*}
\end{document}

其结果为:

我想放置一个如图所示的框(或某种括号)来表示“子计算”。复杂之处在于,该框需要跨越多行方程和 alignat 环境的多列。

我尝试了很多方法,包括\makebox,,\minipage\bcases, \matrix

有什么建议么?

答案1

\parbox在a 内部使用 a ,\fcolorbox在 a 内部使用 a \makebox,并在 内部使用整个构造\intertext;对原始标记做了一些更改(特别是代码被大大简化),但保留了框前后表达式的原始对齐方式:

\documentclass{article}
\usepackage{mathtools}
\usepackage{tikzpagenodes}
\usetikzlibrary{tikzmark}

\begin{document}

Let:
\begin{align*}
G_{\delta_r}^{\beta} &= \frac{n_1 s + n_0}{s^2 + d_1 s + d_0} = \frac{0.01956 s + 7.01}{s^2 + 0.802 s + 6.489} \\
\text{step} \left(G_{\delta_r}^{\beta}(s) \right) = \frac{G_{\delta_r}^{\beta}(s)}{s} &= \frac{1}{s} \cdot \frac{n_1 s + n_0}{s^2 + d_1 s + d_0}
\intertext{%
\makebox[\linewidth][c]{\fcolorbox{blue}{white}{\parbox{\linewidth}{%
Expanding with partial fractions:
\[
\frac{x_1}{s} + \frac{x_{21}s + x_{20}}{s^2 + d_1 s + d_0} = 
\frac{1}{s} \cdot \frac{n_1 s + n_0}{s^2 + d_1 s + d_0}
\]
Removing denominator:
\[
x_1(s^2 + d_1 s + d_0) + s(x_{21} s + x_{20}) = n_1 s + n_0 
\]
Has solutions:
\[
x_{21} = \frac{-n_0}{d_0} = -1.08\qquad
x_1 = \frac{n_0}{d_0} = 1.08\qquad
x_{20} = n_1 - \frac{n_0 d_1}{d_0} = -0.847
\]
Hence:}}}
}
\frac{G_{\delta_r}^{\beta}(s)}{s} &= \frac{1.08}{s} - \frac{1.08s + 0.847}{s^2 + 0.8-2s + 6.489} \\
\shortintertext{Completing the square:}
\frac{G_{\delta_r}^{\beta}(s)}{s} &= \frac{1.08}{s} - \frac{1.08s + 0.847}{(s + 0.401)^2 + 6.328} \\
\shortintertext{Inverse Laplace:}
\mathcal{L}^{-1}\left\{ \frac{G_{\delta_r}^{\beta}(s)}{s} \right\} &=  1.08 - e^{-.401t} \left(1.08 \cos\alpha + \frac{0.847}{\sqrt{6.328}} \sin\alpha \right), 
\end{align*}
where $\alpha=t\sqrt{6.328}$.

\end{document}

在此处输入图片描述

另一个选择是使用tikzmark库;其思想是使用\tikzmark在适当的位置放置标记,然后使用这些标记绘制蓝色矩形。下面我展示了这种方法,并说明了标记的另一种选择(当然,这种方法也适用于上述方法或任何其他变体):

\documentclass{article}
\usepackage{mathtools}
\usepackage{tikzpagenodes}
\usetikzlibrary{tikzmark}

\begin{document}

Let:
\begin{align*}
G_{\delta_r}^{\beta} &= \frac{n_1 s + n_0}{s^2 + d_1 s + d_0} = \frac{0.01956 s + 7.01}{s^2 + 0.802 s + 6.489} \\
\text{step} \left(G_{\delta_r}^{\beta}(s) \right) = \frac{G_{\delta_r}^{\beta}(s)}{s} &= \frac{1}{s} \cdot \frac{n_1 s + n_0}{s^2 + d_1 s + d_0}
\end{align*}         
\tikzmark{start}Expanding with partial fractions:
\[
\frac{x_1}{s} + \frac{x_{21}s + x_{20}}{s^2 + d_1 s + d_0} = 
\frac{1}{s} \cdot \frac{n_1 s + n_0}{s^2 + d_1 s + d_0}
\]
Removing denominator:
\[
x_1(s^2 + d_1 s + d_0) + s(x_{21} s + x_{20}) = n_1 s + n_0 
\]
Has solutions:
\[
x_{21} = \frac{-n_0}{d_0} = -1.08\qquad
x_1 = \frac{n_0}{d_0} = 1.08\qquad
x_{20} = n_1 - \frac{n_0 d_1}{d_0} = -0.847\tikzmark{end}
\]
Hence:
\begin{align*} 
\frac{G_{\delta_r}^{\beta}(s)}{s} &= \frac{1.08}{s} - \frac{1.08s + 0.847}{s^2 + 0.8-2s + 6.489} \\
\shortintertext{Completing the square:}
\frac{G_{\delta_r}^{\beta}(s)}{s} &= \frac{1.08}{s} - \frac{1.08s + 0.847}{(s + 0.401)^2 + 6.328} \\
\shortintertext{Inverse Laplace:}
\mathcal{L}^{-1}\left\{ \frac{G_{\delta_r}^{\beta}(s)}{s} \right\} &=  1.08 - e^{-.401t} \left(1.08 \cos(t\sqrt{6.328}) + \frac{0.847}{\sqrt{6.328}} \sin(t\sqrt{6.328}) \right) 
\end{align*}

\begin{tikzpicture}[remember picture,overlay]
\draw[line width=1.5pt,blue]
  ([xshift=-1ex,yshift=2.5ex]current page text area.west|-{pic cs:start})
  rectangle
  ([yshift=-2.5ex]current page text area.east|-{pic cs:end});
\end{tikzpicture}

\end{document}

在此处输入图片描述

相关内容