如何在单词之间的空白处嵌入图像

如何在单词之间的空白处嵌入图像

我希望将图像“嵌入”到文档的某个页面中,但希望在单词之间留有空格。

最终,我希望当您翻阅这些页面时,能看到一幅动态图像。

我对自己想出的什么都不知道感到惊讶!!涉及单色图像的解决方案将是理想的。

送给我狂热粉丝的一点小礼物 8)

答案1

经过一些问答来了解您的意图后,我发布了这个“答案”,以便向其他读者澄清我认为您的问题意图是什么,同时表明我认为这不可能成功。在我的 MWE 中,我尝试在文本河中放置一个简单的圆圈。为了帮助向读者展示这个圆圈,我再次展示了结果,其中空白河被红色虚线替换。那么为什么我认为这不可行呢?

1) 在我的 MWE 中,河流被夸大了多个空格,但即使用红色虚线突出显示,仍然几乎无法辨别。要做到这一点而不进行如此明显的夸张,难度要大得多;

2)虽然空白河流可能会分散注意力,但我从未听说过有人说它们可以成为人们观察的焦点;

3) 我认为,空白的“像素分辨率”非常粗糙,即使在整页上,分辨率也不足以将空白中的图像表示为未解析的斑点以外的任何图像。

但无论如何,请有人证明我错了。

\documentclass{article}
\usepackage{verbatimbox}
\usepackage{xcolor}
\begin{document}
\let\svdash-
\catcode`-=\active
\def\coloron{\def-{\textcolor{red}{\svdash}}}
\begin{verbnobox}[\rmfamily\coloron]
Here is our goal.  It is a test.  What
we are trying     to see is whether or
if an    image can arise   in
the    rivers of  this text.   That
is   to say,  can one see the    circle
that   is formed  in large    rivers of 
my pic?    Maybe if you    squint, one
can just make        it out. Barely.
Then again, maybe not.
~
Below, the relevant rivers are replaced with dashes
~
Here is our goal.  It is a test.  What
we are trying-----to see is whether or
if an----image can arise---in
the----rivers of  this text.---That
is---to say,  can one see the----circle
that---is formed  in large----rivers of 
my pic?----Maybe if you----squint, one
can just make--------it out. Barely.
Then again, maybe not.
\end{verbnobox}
\end{document}

在此处输入图片描述


如果您确实想要嵌入隐藏图像,并且我建议传达比您的实验室同事“朋友”所考虑的更成熟的信息,那么有更简单的方法:

\documentclass{article}
\usepackage{stackengine,xcolor, graphicx}
\begin{document}
Where is the hidden image%
\stackinset{c}{-.2pt}{b}{.3pt}{\scalebox{0.02}{\textcolor{white}{Hi, mom}}}{?}
\end{document}

在此处输入图片描述

在此处输入图片描述

答案2

基本上可以做到 8)手动调整右边距很麻烦而且不太准确,所以出于教育目的,这里是完成的输出,它既证明又反驳了这是可以做到的,而且是有效的 8)

  \documentclass{article}
  \usepackage{verbatimbox}
  \usepackage{xcolor}
  \begin{document}
  \begin{verbnobox}[\rmfamily]
  target  of  a given  family’s toxin.   Many type II  TAs  target  translational  machinery,
  which  is  highly  conserved  across  all domains of life  (Poole  and  Logan 2005;  Noller
  2004).  DNA synthesis machinery, DNA polymerases  and  primases  are  less  conserved
  (Poole  and  Logan  2005;  Leipe, Aravind,  and  Koonin 1999;  Werner  and  Grohmann
  2011;  Aravind and  Koonin 2001).  Amongst type I  TAs, SymE,  which targets  mRNA
  (Kawano,  Aravind,  and Storz  2007),  would  provide  an  interesting comparison to the
  membrane proteins investigated within this thesis.

Clea   rly, neither toxi   n norantitoxin target  accounts  for  all  differences within  TA
  syste   ms, because families w   ith the same target often contain loci that differ inability
  to c   onfer a PSK effect on a    plasmid  (Szekeres et  al . 2007;  Christensen,  Maenhaut   
  Mich   el, et al. 2004; De Bast,    Mine, and  Van  Melderen  2008;  Wilbaux et al.  2007;
  Fiebig    et al. 2010). Similarly, ty   pe I  and  III  RMs  are not  as mobile and have not
  been sho   wn to induce PSK (Nadere   r et al.  2002;  O’Sullivan  et al.  2000;  Mruk and
  Kobayashi 2014),    but have the same tar   get (DNA) as  type  II  RMs.  Other  factors
  are also important for    PSK, including the le   vels at  which  the  toxin  and  antitoxin
  are expressed, and the rate    at which the toxin and    antitoxin are degraded in the cell
  after plasmid loss (Chapter 5).

TA systems rely on differential d   ecay of  the  toxin  and ant   itoxin  to  induce  PSK
  (Chapter 5). Type II  systems  are ti   ghtly  regulated  by  protein     antitoxins,   which
  interact with the toxin and act as transcr   iptional  repressors,  sensitive    to changes  in
  stoichiometry (Mruk and Kobayashi 2014;    J. Zhang,  Y.  Zhang, and M. In   ouye 2003;
  Kedzierska,  Lian,  and F.  Hayes  2007;    Cataudella, Sneppen, et al. 2013; Cata   udella,
  Trusina,  et  al.  2012; Afif  et al. 2001).    I used  equations  of  logarithmic decay    as a
  starting point for analyzing the condit   ions necessary for type  II  TAs to exhibit P   SK.
  In particular, I analyzed the pop   ulation of toxin and antitoxin in the cell necessary    for
  PSK given their respective half   -lives ( Chapter  5 ). Antitoxins  with similar stabil   ities
  as their associated toxins cannot    be  expressed  in  numbers  significantly  higher    than
  the toxin,  or  there  will  not be su   fficient free  toxin  to create a  PSK effect    within a
  given time period.  Given the  inherent    noise of ge   ne  expression (Rase   r and  O’Shea
  2005; C. V. Rao, D. M. Wolf, and Arkin 2002),    system   s relying    on stable antitoxins
  risk  plasmid  suicide from  excess toxin  in  the cell     prior to  loss. Thus, there  is likely
  to be an evolutionary trend toward TA systems with high expression levels of very
  \end{verbnobox}
  \end{document}

在此处输入图片描述

相关内容