`\tag` 和 `\Rightarrow`

`\tag` 和 `\Rightarrow`
\documentclass[a4paper,12pt]{article}
\usepackage{amsmath}
\usepackage{fullpage}
\usepackage{secdot}
\usepackage{setspace}

\setlength\parindent{0pt}

\title{\vspace{-3em} Quantum Mechanics}
\author{David G}

\begin{document}
\maketitle

\section{Operators In Schroedinger Equation}
\onehalfspacing
In quantum mechanics, a question that concerns us all is whether light is particles or waves. Let's first assume light is wave, so it must satisfy the wave equation:
\begin{align*}
    \left (\frac{\partial^2 \psi}{\partial x^2}+\frac{\partial^2 \psi}{\partial y^2}+\frac{\partial^2 \psi}{\partial z^2} \right)-
        \frac{1}{c^2}  \frac{\partial^2 \psi}{\partial t^2} & = 0 \tag{\textbf{1.1}}\\
    \nabla^2 \psi - \frac{1}{c^2}  \frac{\partial^2 \psi}{\partial t^2} & = 0 \tag{\textbf{1.2}}
\end{align*}

Naturally, we construct the solution of this wave equation: 
\[ 
\psi(x,y,z;t) = \psi_{0} \, e^{i \, [\, k (x+y+z)- \omega t + \phi_{0}\, ]} \tag{\textbf{1.3}}
\]

Here, we can set the initial condition $\phi_{0} = 0$, and we would like to explore the 1D case:
\[ 
    \psi(x,t) = \psi_{x,0} \, e^{i \, (kx- \omega t)} \tag{\textbf{1.4}}
\] 
Now, we lay down all the foundation, and we want to express the momentum and energy operators, by using the solution of the wave function. By observing the equation:
\[ 
E = \frac{p^2}{2m} + V \tag{\textbf{1.5}}
\]
We want to express the momentum $p$ as a differential operator.
\begin{align*}
       \frac{\partial \psi}{\partial x}  &= i k \psi 
                                          = i \frac{p}{h} \psi \tag{\textbf{1.6}} \\
                               p \, \psi &= - i \hbar \frac{\partial}{\partial x} \psi \\
                                 \hat{p} &= - i \hbar \frac{\partial}{\partial x} \tag{\textbf{1.7}}
\end{align*}
\pagebreak

Plug equation $1.7$ into $1.5$, we get:
\[
        \hat{H} = - \frac{\hbar ^2}{2 m} \frac{\partial ^2}{\partial x^2} + \hat{V} \tag{\textbf{1.8}}
\]
, where $\hat{H}$ is Hamiltonian Operator, namely the Energy Operator.\\
To this point, we only explore the property of $\frac{\partial \psi}{\partial x}$. A natural thought right afterwards is to see $\frac{\partial \psi}{\partial t}$.
\begin{align*}
        \frac{\partial \psi}{\partial t} & = - i \omega \psi \tag{\textbf{1.9}} 
                                           = - i \frac{E}{\hbar} \psi \\
                                \hat{H}  & = i \hbar \frac{\partial}{\partial t} \tag{\textbf{1.10}}
\end{align*}
Now, by observing equation $1.8$ and $1.10$, we derive that the wave function of one particle must satisfy the \textbf{Schroedinger Equation}:
\[
    \boxed{ i \hbar \frac{\partial}{\partial t} = - \frac{\hbar^2}{2m} \frac{\partial ^2}{\partial x^2} + \hat{V} } \tag{\textbf{1.11}}
\]
\end{document}

我对我的代码有两个疑问:

  1. 有没有一种简单的方法可以计算\tag我的方程式?比如,一些命令会自动计算tag(1.1)、(1.2)...等等。我不想每次都输入那些方程式编号。

  2. \begin{align*} \frac{\partial \psi}{\partial t} & = - i \omega \psi \tag{\textbf{1.9}} = - i \frac{E}{\hbar} \psi \\ \hat{H} & = i \hbar \frac{\partial}{\partial t} \tag{\textbf{1.10}} \end{align*}

在这段代码中,我想\Rightarrow在等式 1.10 的最左边添加一个,该怎么做?另外,我也不确定最左边的位置是不是最好看,大家可以帮我调整一下位置,只要好看就行。

  1. 任何关于我的代码的建议,比如冗余或改进,都欢迎。我希望每次都能有所进步!

答案1

您可以使用

\renewcommand\theequation{\thesection.\arabic{equation}}

对于 Q1。对于 Q2,我将使用mathtoolsamsmath 而不是其\mathllap

\mathllap{\Rightarrow} \qquad     \hat{H}  & = i \hbar \frac{\partial}{\partial t} \label{eq:yours}

\label此外,您可以使用andref机制并 let 来完成这项工作,而不是对方程式进行硬编码引用LaTeX。此外,最好使用\eqref而不是简单的\ref。如果您想再进一步,请阅读(学习)并使用cleveref包。

但是,正如 Sigur 所建议的,您似乎需要初步了解一下 的能力LaTeX。我在这里就不多说了,我建议您尽量充分利用 这位巨人的力量LaTeX

\documentclass[a4paper,12pt]{article}
\usepackage{mathtools}
%\usepackage{fullpage}   %% Use geometry package instead
\usepackage{secdot}
\usepackage{setspace}

\setlength\parindent{0pt}

\title{\vspace{-3em} Quantum Mechanics}  %% there are other good ways of removing space here. Search this site for examples.
\author{David G}
\renewcommand\theequation{\thesection.\arabic{equation}}
\begin{document}
\maketitle

\section{Operators In Schroedinger Equation}
\onehalfspacing
In quantum mechanics, a question that concerns us all is whether light is particles or waves. Let's first assume light is wave, so it must satisfy the wave equation:
\begin{align}
    \left (\frac{\partial^2 \psi}{\partial x^2}+\frac{\partial^2 \psi}{\partial y^2}+\frac{\partial^2 \psi}{\partial z^2} \right)-
        \frac{1}{c^2}  \frac{\partial^2 \psi}{\partial t^2} & = 0 \\
    \nabla^2 \psi - \frac{1}{c^2}  \frac{\partial^2 \psi}{\partial t^2} & = 0 
\end{align}

Naturally, we construct the solution of this wave equation:
\begin{align}
\psi(x,y,z;t) = \psi_{0} \, e^{i \, [\, k (x+y+z)- \omega t + \phi_{0}\, ]} 
\end{align}

Here, we can set the initial condition $\phi_{0} = 0$, and we would like to explore the 1D case:
\begin{align}
    \psi(x,t) = \psi_{x,0} \, e^{i \, (kx- \omega t)} 
\end{align}
Now, we lay down all the foundation, and we want to express the momentum and energy operators, by using the solution of the wave function. By observing the equation:
\begin{align}\label{eq:energy}
E = \frac{p^2}{2m} + V 
\end{align}
We want to express the momentum $p$ as a differential operator.
\begin{align}
       \frac{\partial \psi}{\partial x}  &= i k \psi
                                          = i \frac{p}{h} \psi \\
                               p \, \psi &= - i \hbar \frac{\partial}{\partial x} \psi \notag\\
                                 \hat{p} &= - i \hbar \frac{\partial}{\partial x} \label{eq:momop}
\end{align}
\pagebreak

Plug equation~\eqref{eq:momop} into~\eqref{eq:energy}, we get:
\begin{align}\label{eq:mine}
        \hat{H} = - \frac{\hbar ^2}{2 m} \frac{\partial ^2}{\partial x^2} + \hat{V} 
\end{align}
, where $\hat{H}$ is Hamiltonian Operator, namely the Energy Operator.\\
To this point, we only explore the property of $\frac{\partial \psi}{\partial x}$. A natural thought right afterwards is to see $\frac{\partial \psi}{\partial t}$.
\begin{align}
         \frac{\partial \psi}{\partial t} & = - i \omega \psi \\
                                          & = - i \frac{E}{\hbar} \psi \notag \\
  \mathllap{\Rightarrow} \qquad     \hat{H}  & = i \hbar \frac{\partial}{\partial t} \label{eq:yours}
\end{align}
Now, by observing equation~\eqref{eq:mine} and~\eqref{eq:yours}, we derive that the wave function of one particle must satisfy the \textbf{Schroedinger Equation}:
\begin{align}
    \boxed{ i \hbar \frac{\partial}{\partial t} = - \frac{\hbar^2}{2m} \frac{\partial ^2}{\partial x^2} + \hat{V} } 
\end{align}
\end{document}

答案2

这里有一种方法,使用chngcntr包,将节号放在方程式编号中,mathtools更改标记的格式(粗体数字)cleveref并将对象类型(此处为方程式)合并到标签中,而无需键入单词“方程式”。我没有使用不必要的secdot包(我的系统上没有安装),而是用fullpage(同样的原因)替换。我还用(我认为尺寸更好)geometry替换了几乎所有\hat命令;同样,我用在序言中定义的命令替换了最后一个命令。在文档的末尾,我使用了包中的命令(中等大小的分数),因为我认为文本中的分数确实太小了。\widehat\boxed\widebox\mfracnccmath

对于第二个问题,我认为最好写一些短语,例如whence:。将其放在等式的左边一点,使用 \ flalign environment and the\rlap` 命令使等式保持居中。

对于 seconf \documentclass[a4paper,12pt]{article} \usepackage{mathtools} \newtagform{bold}[\textbf]{(}{)} \usetagform{bold} \usepackage{nccmath} \usepackage[margin = 1.5cm]{geometry} %\usepackage{fullpage} \usepackage{chngcntr} \counterwithin{equation}{section} %\usepackage{secdot} \usepackage{setspace}

\usepackage[noabbrev]{cleveref}
\creflabelformat{equation}{#1#2#3}
\newcommand \widebox[1]{\setlength\fboxsep{6pt}\boxed {\enspace#1\enspace}}
\setlength\parindent{0pt}

\title{\vspace{-3em} Quantum Mechanics}
\author{David G}

\begin{document}
\maketitle

\section{Operators In Schroedinger Equation}
\onehalfspacing
In quantum mechanics, a question that concerns us all is whether light is particles or waves. Let's first assume light is wave, so it must satisfy the wave equation:
\begin{align}
    \left (\frac{\partial^2 \psi}{\partial x^2}+\frac{\partial^2 \psi}{\partial y^2}+\frac{\partial^2 \psi}{\partial z^2} \right)-
        \frac{1}{c^2} \frac{\partial^2 \psi}{\partial t^2} & = 0 \\
    \nabla^2 \psi - \frac{1}{c^2} \frac{\partial^2 \psi}{\partial t^2} & = 0
\end{align}

Naturally, we construct the solution of this wave equation:
\begin{equation}
  \psi(x,y,z;t) = \psi_{0} \, e^{i [ k (x+y+z)- \omega t + \phi_{0} ]}
\end{equation}

Here, we can set the initial condition $\phi_{0} = 0$, and we would like to explore the 1D case:
\begin{equation}
    \psi(x,t) = \psi_{x,0} \, e^{i (kx- \omega t)}
\end{equation}
Now, we lay down all the foundation, and we want to express the momentum and energy operators, by using the solution of the wave function. By observing the equation:
\begin{equation}\label{energy}
E = \frac{p^2}{2m} + V
\end{equation}
We want to express the momentum $p$ as a differential operator.
\begin{align}
       \frac{\partial \psi}{\partial x} &= i k \psi = i \frac{p}{h} \psi \\
                               p \,\psi &= - i \hbar \frac{\partial}{\partial x} \psi \notag \\%
                                 \hat{p} &= - i \hbar \frac{\partial}{\partial x} \label{momentum}
\end{align}
\pagebreak

Plug \cref{momentum} into \ref{energy}, we get:
\begin{equation}\label{ham}
        \widehat{H} = - \frac{\hbar ^2}{2 m} \frac{\partial ^2}{\partial x^2} + \widehat{V},
\end{equation}
where $\widehat{H}$ is Hamiltonian Operator, namely the Energy Operator.



    To this point, we only explore the property of $\mfrac{\partial \psi}{\partial x}$. A natural thought right afterwards is to see $\mfrac{\partial \psi}{\partial t}$.
    \begin{align}
   & & \frac{\partial \psi}{\partial t} & = - i \omega \psi = - i \frac{E}{\hbar} \psi & & \\
 \text{\rlap{whence: }} &{} & \widehat{H} & = i \hbar \frac{\partial}{\partial t} \label{newham}
    \end{align}
    Now, by observing \cref{ham,newham}, we derive that the wave function of one particle must satisfy the \textbf{Schroedinger Equation}:
    \begin{equation}
        \widebox{ i \hbar \frac{\partial}{\partial t} = - \frac{\hbar^2}{2m} \frac{\partial ^2}{\partial x^2} + \widehat{V}. }
\end{equation}


\end{document} 

在此处输入图片描述 在此处输入图片描述

相关内容