LateX 没有显示我想要的方程式;F(x)= exp[-exp(\frac{x - \mu}{\sigma})]。它如下图所示。
此外,我的 \begin{cases} .... \end{cases} 无法运行。这是我的代码:-
\documentclass{beamer}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{comicsans}
\usepackage{graphicx}
\usepackage[inline]{enumitem}
\usepackage{array}
\makeatletter
\newcommand*{\rom}[1]{\expandafter\@slowromancap\romannumeral #1@}
\makeatother
\begin{document}
\begin{frame}
\frametitle{1.2.1 Gumbel Distribution}
\begin{itemize}
\item a.k.a the Extreme Value Type \rom{1} distribution is bounded and has the
following probability density function $$F(x)= exp [- exp(\frac{x-\mu}{\sigma})]$$
%repair this
where, \\
$\mu$ is the location parameter,\\
$\sigma$ is the scale parameter, ($\sigma$>0).\\
\vspace{0.3cm}
The shape of the Gumbel model does not depend on he distribution parameters.
\end{itemize}
\end{frame}
\begin{frame}
$$
F(x) = \begin{cases}
0, $ \text{$x>\mu$} \\
exp[-{$\frac{x-\mu}{\sigma}}$], & $x \geq \mu$
\end{cases}
$$ \\
where \\
$\xi$ is the shape parameter, \\
$\mu$ is the location parameter, \\
$\sigma$ is the scale parameter, ($\sigma$ > 0) [2]
\end{frame}
\end{document}
答案1
不美观,但可编译版本。可能将第一个&
需要的\cases
与$
强制的临时更改混合在一起,并包含许多不需要的$
。
\documentclass{beamer}
\usepackage{amsmath}
\usepackage{amssymb}
% \usepackage{comicsans}
\usepackage{graphicx}
% \usepackage[inline]{enumitem}
\usepackage{array}
\makeatletter
\newcommand*{\rom}[1]{\expandafter\@slowromancap\romannumeral #1@}
\makeatother
\begin{document}
\begin{frame}
\frametitle{1.2.1 Gumbel Distribution}
\begin{itemize}
\item a.k.a the Extreme Value Type \rom{1} distribution is bounded and has the
following probability density function
\[
F(x)= \exp [- \exp(\frac{x-\mu}{\sigma})]
\]
%repair this
where, \\
$\mu$ is the location parameter,\\
$\sigma$ is the scale parameter, ($\sigma>0$).\\
\vspace{0.3cm}
The shape of the Gumbel model does not depend on he distribution parameters.
\end{itemize}
\end{frame}
\begin{frame}
\[
F(x) = \begin{cases}
0, &\text{$x>\mu$} \\
exp[-{\frac{x-\mu}{\sigma}}], & x \geq \mu
\end{cases}
\]
where \\
$\xi$ is the shape parameter, \\
$\mu$ is the location parameter, \\
$\sigma$ is the scale parameter, ($\sigma > 0$) [2]
\end{frame}
\end{document}