居中方程编号,删除边距规范

居中方程编号,删除边距规范

经过几个小时的努力,我已经(接近)得到了我想要的最终产品。现在我只需要弄清楚如何放置:

  1. (1)位于方程右边的中心
  2. 将边距设为 LateX 默认值,且方程式不会超出页面范围。

我的意思是:

在此处输入图片描述

这是我的代码:

\documentclass[10pt]{article}
\usepackage{makeidx}
\usepackage{multirow}
\usepackage{multicol}
\usepackage[dvipsnames,svgnames,table]{xcolor}
\usepackage{graphicx}
\usepackage[margin=0.5in]{geometry}
\usepackage{epstopdf}
\usepackage{ulem}
\usepackage{hyperref}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage[super]{nth}
\usepackage{graphicx}
\begin{document}
{\small
\begin{equation}
\begin{alignedat}{5}
\frac{dX_{SS}}{dt} &= \Lambda{}-\mu{}X_{SS}-\frac{{\beta{}}_IX_{SS}}{N}A-\frac{{\beta{}}_AX_{SS}}{N}B-\frac{\tau{}X_{SS}}{N}C, \\
\frac{dX_{SL}}{dt} &= \frac{\tau{}X_{SS}}{N}C-\frac{{\beta{}}_IX_{SL}}{N}A-\frac{{\beta{}}_AX_{SL}}{N}B-\left({\delta{}}_{SL}+\mu{}\right)X_{SL}, \\
\frac{dX_{ST}}{dt} &= {\delta{}}_{SL}X_{SL}-\frac{{\beta{}}_IX_{ST}}{N}A-\frac{{\beta{}}_AX_{ST}}{N}B-\left(\mu{}+{\mu{}}_T+{\psi{}}_S{\lambda{}}_T\right)X_{ST}, \\
\frac{dX_{HS}}{dt} &= \frac{{\beta{}}_IX_{SS}}{N}A+\frac{{\beta{}}_AX_{SS}}{N}B-\frac{\tau{}X_{HS}}{N}C-\left({\nu{}}_{HS}+\mu{}+{{\sigma{}}_1\lambda{}}_H\right)X_{HS}, \\
\frac{dX_{HL}}{dt} &= \frac{{\beta{}}_IX_{SL}}{N}A+\frac{{\beta{}}_AX_{SL}}{N}B+\frac{\tau{}X_{HS}}{N}C-\left({\nu{}}_{HL}+{\delta{}}_{HL}+\mu{}+{\sigma{}}_3{\lambda{}}_H\right)X_{HL}, \\
\frac{dX_{HT}}{dt} &= \frac{{\beta{}}_IX_{ST}}{N}A+\frac{{\beta{}}_AX_{ST}}{N}B+{\delta{}}_{HL}X_{HL}-\left({\nu{}}_{HT}+\mu{}+{\mu{}}_T+{\sigma{}}_5{\lambda{}}_H+{\psi{}}_H{\lambda{}}_T\right)X_{HT}, \\
\frac{dX_{AS}}{dt} &= {\nu{}}_{HS}X_{HS}-\frac{\tau{}X_{AS}}{N}C-\left(\mu{}+{\mu{}}_A+{\sigma{}}_2{\lambda{}}_H\right)X_{AS}, \\
\frac{dX_{AL}}{dt} &= {\nu{}}_{HL}X_{HL}+\frac{\tau{}X_{AS}}{N}C-\left({\delta{}}_{AL}+\mu{}+{\mu{}}_A+{\sigma{}}_4{\lambda{}}_H\right)X_{AL}, \\
\frac{dX_{AT}}{dt} &= {\nu{}}_{HT}X_{HT}+{\delta{}}_{AL}X_{AL}-\left(\mu{}+{\mu{}}_A+{\mu{}}_T+{\lambda{}}_T+{\lambda{}}_H\right)X_{AT}, \\
\frac{dX_{S+T_T^{\left(1\right)}}}{dt} &= {\psi{}}_S{\lambda{}}_TX_{ST}-\left(\mu{}+{\lambda{}}_{T_1}\right)X_{S+T_T^{\left(1\right)}}-\frac{{\beta{}}_IX_{S+T_T^{\left(1\right)}}}{N}A-\frac{{\beta{}}_AX_{S+T_T^{\left(1\right)}}}{N}B, \\
\frac{dX_{S+T_T^{\left(2\right)}}}{dt} &= {\lambda{}}_{T_1}X_{S+T_T^{\left(1\right)}}-\frac{{\beta{}}_IX_{S+T_T^{\left(2\right)}}}{N}A-\frac{{\beta{}}_AX_{S+T_T^{\left(2\right)}}}{N}B-(\mu{}+{\lambda{}}_{T_2})X_{S+T_T^{\left(2\right)}}, \\
\frac{dX_{S+T_T^{\left(3\right)}}}{dt} &= {\lambda{}}_{T_2}X_{S+T_T^{\left(2\right)}}-\frac{{\beta{}}_IX_{S+T_T^{\left(3\right)}}}{N}A-\frac{{\beta{}}_AX_{S+T_T^{\left(3\right)}}}{N}B-\mu{}X_{S+T_T^{\left(3\right)}}, \\
\frac{dX_{H+T_T^{\left(1\right)}}}{dt} &= {\psi{}}_H{\lambda{}}_TX_{HT}+\frac{{\beta{}}_IX_{S+T_T^{\left(1\right)}}}{N}A+\frac{{\beta{}}_AX_{S+T_T^{\left(1\right)}}}{N}B-(\mu{}+{\lambda{}}_{T_1}+{{\alpha{}}_1\lambda{}}_{H_1}+{\nu{}}_{HT})X_{H+T_T^{\left(1\right)}}, \\
\frac{dX_{H+T_T^{\left(2\right)}}}{dt} &= {\lambda{}}_{T_1}X_{H+T_T^{\left(1\right)}}+\frac{{\beta{}}_IX_{S+T_T^{\left(2\right)}}}{N}A+\frac{{\beta{}}_AX_{S+T_T^{\left(2\right)}}}{N}B-\left(\mu{}+{\lambda{}}_{T_2}+{{\alpha{}}_2\lambda{}}_{H_2}+{\nu{}}_{HT}\right)X_{H+T_T^{\left(2\right)}}, \\ 
\frac{dX_{H+T_T^{\left(3\right)}}}{dt} &= {\lambda{}}_{T_2}X_{H+T_T^{\left(2\right)}}+\frac{{\beta{}}_IX_{S+T_T^{\left(3\right)}}}{N}A+\frac{{\beta{}}_AX_{S+T_T^{\left(3\right)}}}{N}B-\left(\mu{}+{\nu{}}_{HT}+{\sigma{}}_1{\lambda{}}_H\right)X_{H+T_T^{\left(3\right)}}, \\
\frac{dX_{A+T_T^{\left(1\right)}}}{dt} &= {\lambda{}}_TX_{AT}+{\nu{}}_{HT}X_{H+T_T^{\left(1\right)}}\-\left(\mu{}+{\mu{}}_A+{\lambda{}}_{T_1}+{\lambda{}}_{H_1}\right)X_{A+T_T^{\left(1\right)}}, \\ 
\frac{dX_{A+T_T^{\left(2\right)}}}{dt} &= {\lambda{}}_{T_1}X_{A+T_T^{\left(1\right)}}+{\nu{}}_{HT}X_{H+T_T^{\left(2\right)}}-{(\mu{}+{\mu{}}_A+\lambda{}}_{T_2}+{\lambda{}}_{H_2})X_{A+T_T^{\left(2\right)}}, \\
\frac{dX_{A+T_T^{\left(3\right)}}}{dt} &= {\lambda{}}_{T_2}X_{A+T_T^{\left(2\right)}}+{\nu{}}_{HT}X_{H+T_T^{\left(3\right)}}-(\mu{}+{\mu{}}_A+{\sigma{}}_2{\lambda{}}_H)X_{A+T_T^{\left(3\right)}}, \\
\frac{dX_{H_T+L}}{dt} &= {\sigma{}}_3{\lambda{}}_HX_{HL}+{\sigma{}}_4{\lambda{}}_HX_{AL}-(\mu{}+\phi{}{\delta{}}_{HL})X_{H_T+L}, \\
\frac{dX_{H_T+T}}{dt} &= \phi{}{\delta{}}_{HL}X_{H_T+L}+{\lambda{}}_HX_{AT}-(\mu{}+{\psi{}}_H{\lambda{}}_T)X_{H_T+T}+{\sigma{}}_5{\lambda{}}_HX_{HT}, \\
\frac{dX_{H_T+T_T^{\left(1\right)}}}{dt} &= {\psi{}}_H{\lambda{}}_TX_{H_T+T}+{\lambda{}}_{H_1}X_{A+T_T^{\left(1\right)}}+{\alpha{}}_1{\lambda{}}_{H_1}X_{H+T_T^{\left(1\right)}}-(\mu{}+{\lambda{}}_{T_1}+\gamma{})X_{H_T+T_T^{\left(1\right)}}, \\
\frac{dX_{H_T+T_T^{\left(2\right)}}}{dt} &= {\lambda{}}_{T_1}X_{H_T+T_T^{\left(1\right)}}+{\alpha{}}_2{\lambda{}}_{H_2}X_{H+T_T^{\left(2\right)}}+{\lambda{}}_{H_2}X_{A+T_T^{\left(2\right)}}-\left(\mu{}+{\lambda{}}_{T_2}+\gamma{}\frac{{\lambda{}}_{T_1}}{{\lambda{}}_{T_1}+{\lambda{}}_{T_2}}\right)X_{H_T+T_T^{\left(2\right)}}, \\
\frac{dX_{H_{T_1}}}{dt} &= {\lambda{}}_{T_2}X_{H_T+T_T^{\left(2\right)}}+{\sigma{}}_1{\lambda{}}_HX_{H+T_T^{\left(3\right)}}+{\sigma{}}_2{\lambda{}}_HX_{A+T_T^{\left(3\right)}}-\mu{}X_{H_{T_1}}, \\
\frac{dX_{H_{T_2}}}{dt} &= {\sigma{}}_1{\lambda{}}_HX_{HS}+{\sigma{}}_2{\lambda{}}_HX_{AS}-\mu{}X_{H_{T_2}}, \\
\frac{dX_{IRIS}}{dt} &= \gamma{}\left(X_{H_T+T_T^{\left(1\right)}}+\frac{{\lambda{}}_{T_1}}{{\lambda{}}_{T_1}+{\lambda{}}_{T_2}}X_{H_T+T_T^{\left(2\right)}}\right)-\left(\mu{}+{\mu{}}_{IRIS}\right)X_{IRIS}, \\
\text{where}, \\
A &= X_{HS}+X_{HL}+X_{HT}+X_{H+T_T^{\left(1\right)}}+X_{H+T_T^{\left(2\right)}}+X_{H+T_T^{\left(3\right)}}, \\
B &= X_{AS}+X_{AL}+X_{AT}+X_{A+T_T^{\left(1\right)}}+X_{A+T_T^{\left(2\right)}}+X_{A+T_T^{\left(3\right)}}, \\
C &= X_{ST}+X_{HT}+X_{AT}+X_{H_T+T}, \\
N &= A+B+{X_{SS}+X}_{S+T_T^{\left(1\right)}}+X_{S+T_T^{\left(2\right)}}+X_{S+T_T^{\left(3\right)}}+X_{H_T+L}+X_{H_T+T}+X_{H_T+T_T^{\left(1\right)}}+X_{H_T+T_T^{\left(2\right)}}+X_{H_{T_1}}+X_{H_{T_2}}+X_{IRIS}
\end{alignedat}
\end{equation}
}
\end{document}

如果需要任何澄清,请告诉我。

答案1

\documentclass[10pt]{article}
\usepackage{makeidx}
\usepackage{multirow}
\usepackage{multicol}
\usepackage[dvipsnames,svgnames,table]{xcolor}
\usepackage{graphicx}
\usepackage[margin=0.5in]{geometry}
\usepackage{epstopdf}
\usepackage{ulem}
\usepackage{hyperref}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage[super]{nth}
\usepackage{graphicx}
\begin{document}
{\small
\begin{equation}
\begin{alignedat}{5}
\frac{dX_{SS}}{dt} &= \Lambda{}-\mu{}X_{SS}-\frac{\beta_IX_{SS}}{N}A-\frac{\beta_AX_{SS}}{N}B-\frac{\tau{}X_{SS}}{N}C, \\
\frac{dX_{SL}}{dt} &= \frac{\tau{}X_{SS}}{N}C-\frac{\beta_IX_{SL}}{N}A-\frac{\beta_AX_{SL}}{N}B-(\delta_{SL}+\mu{})X_{SL}, \\
\frac{dX_{ST}}{dt} &= \delta_{SL}X_{SL}-\frac{\beta_IX_{ST}}{N}A-\frac{\beta_AX_{ST}}{N}B-(\mu{}+\mu_T+\psi_S\lambda_T)X_{ST}, \\
\frac{dX_{HS}}{dt} &= \frac{\beta_IX_{SS}}{N}A+\frac{\beta_AX_{SS}}{N}B-\frac{\tau{}X_{HS}}{N}C-(\nu_{HS}+\mu{}+{\sigma_1\lambda{}}_H)X_{HS}, \\
\frac{dX_{HL}}{dt} &= \frac{\beta_IX_{SL}}{N}A+\frac{\beta_AX_{SL}}{N}B+\frac{\tau{}X_{HS}}{N}C-(\nu_{HL}+\delta_{HL}+\mu{}+\sigma_3\lambda_H)X_{HL}, \\
\frac{dX_{HT}}{dt} &= \frac{\beta_IX_{ST}}{N}A+\frac{\beta_AX_{ST}}{N}B+\delta_{HL}X_{HL}-(\nu_{HT}+\mu{}+\mu_T+\sigma_5\lambda_H+\psi_H\lambda_T)X_{HT}, \\
\frac{dX_{AS}}{dt} &= \nu_{HS}X_{HS}-\frac{\tau{}X_{AS}}{N}C-(\mu{}+\mu_A+\sigma_2\lambda_H)X_{AS}, \\
\frac{dX_{AL}}{dt} &= \nu_{HL}X_{HL}+\frac{\tau{}X_{AS}}{N}C-(\delta_{AL}+\mu{}+\mu_A+\sigma_4\lambda_H)X_{AL}, \\
\frac{dX_{AT}}{dt} &= \nu_{HT}X_{HT}+\delta_{AL}X_{AL}-(\mu{}+\mu_A+\mu_T+\lambda_T+\lambda_H)X_{AT}, \\
\frac{dX_{S+T_T^{(1)}}}{dt} &= \psi_S\lambda_TX_{ST}-(\mu{}+\lambda_{T_1})X_{S+T_T^{(1)}}-\frac{\beta_IX_{S+T_T^{(1)}}}{N}A-\frac{\beta_AX_{S+T_T^{(1)}}}{N}B, \\
\frac{dX_{S+T_T^{(2)}}}{dt} &= \lambda_{T_1}X_{S+T_T^{(1)}}-\frac{\beta_IX_{S+T_T^{(2)}}}{N}A-\frac{\beta_AX_{S+T_T^{(2)}}}{N}B-(\mu{}+\lambda_{T_2})X_{S+T_T^{(2)}}, \\
\frac{dX_{S+T_T^{(3)}}}{dt} &= \lambda_{T_2}X_{S+T_T^{(2)}}-\frac{\beta_IX_{S+T_T^{(3)}}}{N}A-\frac{\beta_AX_{S+T_T^{(3)}}}{N}B-\mu{}X_{S+T_T^{(3)}}, \\
\frac{dX_{H+T_T^{(1)}}}{dt} &= \psi_H\lambda_TX_{HT}+\frac{\beta_IX_{S+T_T^{(1)}}}{N}A+\frac{\beta_AX_{S+T_T^{(1)}}}{N}B-(\mu{}+\lambda_{T_1}+{\alpha_1\lambda{}}_{H_1}+\nu_{HT})X_{H+T_T^{(1)}}, \\
\frac{dX_{H+T_T^{(2)}}}{dt} &= \lambda_{T_1}X_{H+T_T^{(1)}}+\frac{\beta_IX_{S+T_T^{(2)}}}{N}A+\frac{\beta_AX_{S+T_T^{(2)}}}{N}B-(\mu{}+\lambda_{T_2}+{\alpha_2\lambda{}}_{H_2}+\nu_{HT})X_{H+T_T^{(2)}}, \\ 
\frac{dX_{H+T_T^{(3)}}}{dt} &= \lambda_{T_2}X_{H+T_T^{(2)}}+\frac{\beta_IX_{S+T_T^{(3)}}}{N}A+\frac{\beta_AX_{S+T_T^{(3)}}}{N}B-(\mu{}+\nu_{HT}+\sigma_1\lambda_H)X_{H+T_T^{(3)}}, \\
\frac{dX_{A+T_T^{(1)}}}{dt} &= \lambda_TX_{AT}+\nu_{HT}X_{H+T_T^{(1)}}\-(\mu{}+\mu_A+\lambda_{T_1}+\lambda_{H_1})X_{A+T_T^{(1)}}, \\ 
\frac{dX_{A+T_T^{(2)}}}{dt} &= \lambda_{T_1}X_{A+T_T^{(1)}}+\nu_{HT}X_{H+T_T^{(2)}}-{(\mu{}+\mu_A+\lambda{}}_{T_2}+\lambda_{H_2})X_{A+T_T^{(2)}}, \\
\frac{dX_{A+T_T^{(3)}}}{dt} &= \lambda_{T_2}X_{A+T_T^{(2)}}+\nu_{HT}X_{H+T_T^{(3)}}-(\mu{}+\mu_A+\sigma_2\lambda_H)X_{A+T_T^{(3)}}, \\
\frac{dX_{H_T+L}}{dt} &= \sigma_3\lambda_HX_{HL}+\sigma_4\lambda_HX_{AL}-(\mu{}+\phi{}\delta_{HL})X_{H_T+L}, \\
\frac{dX_{H_T+T}}{dt} &= \phi{}\delta_{HL}X_{H_T+L}+\lambda_HX_{AT}-(\mu{}+\psi_H\lambda_T)X_{H_T+T}+\sigma_5\lambda_HX_{HT}, \\
\frac{dX_{H_T+T_T^{(1)}}}{dt} &= \psi_H\lambda_TX_{H_T+T}+\lambda_{H_1}X_{A+T_T^{(1)}}+\alpha_1\lambda_{H_1}X_{H+T_T^{(1)}}-(\mu{}+\lambda_{T_1}+\gamma{})X_{H_T+T_T^{(1)}}, \\
\frac{dX_{H_T+T_T^{(2)}}}{dt} &= \lambda_{T_1}X_{H_T+T_T^{(1)}}+\alpha_2\lambda_{H_2}X_{H+T_T^{(2)}}+\lambda_{H_2}X_{A+T_T^{(2)}}-(\mu{}+\lambda_{T_2}+\gamma{}\frac{\lambda_{T_1}}{\lambda_{T_1}+\lambda_{T_2}})X_{H_T+T_T^{(2)}}, \\
\frac{dX_{H_{T_1}}}{dt} &= \lambda_{T_2}X_{H_T+T_T^{(2)}}+\sigma_1\lambda_HX_{H+T_T^{(3)}}+\sigma_2\lambda_HX_{A+T_T^{(3)}}-\mu{}X_{H_{T_1}}, \\
\frac{dX_{H_{T_2}}}{dt} &= \sigma_1\lambda_HX_{HS}+\sigma_2\lambda_HX_{AS}-\mu{}X_{H_{T_2}}, \\
\frac{dX_{IRIS}}{dt} &= \gamma{}(X_{H_T+T_T^{(1)}}+\frac{\lambda_{T_1}}{\lambda_{T_1}+\lambda_{T_2}}X_{H_T+T_T^{(2)}})-(\mu{}+\mu_{IRIS})X_{IRIS}, \\
\text{where}, \\
A &= X_{HS}+X_{HL}+X_{HT}+X_{H+T_T^{(1)}}+X_{H+T_T^{(2)}}+X_{H+T_T^{(3)}}, \\
B &= X_{AS}+X_{AL}+X_{AT}+X_{A+T_T^{(1)}}+X_{A+T_T^{(2)}}+X_{A+T_T^{(3)}}, \\
C &= X_{ST}+X_{HT}+X_{AT}+X_{H_T+T}, \\
N &= A+B+{X_{SS}+X}_{S+T_T^{(1)}}+X_{S+T_T^{(2)}}+X_{S+T_T^{(3)}}+X_{H_T+L}+{}\\
&\qquad X_{H_T+T}+X_{H_T+T_T^{(1)}}+X_{H_T+T_T^{(2)}}+X_{H_{T_1}}+X_{H_{T_2}}+X_{IRIS}
\end{alignedat}
\end{equation}
}
\end{document}

相关内容