我想知道为什么方程式的所有多行都没有左对齐?我尝试使用对齐,但方程式太长,我无法将其拆分。
\documentclass[11pt,a4paper,oneside]{report}
\usepackage[T1]{fontenc}
\usepackage{fouriernc}
\usepackage{mathtools}
\usepackage{amsthm}
\usepackage{amsfonts}
\usepackage{amssymb}
\begin{document}
\begin{eqnarray*}
N =&\frac{\theta _{1}-\theta _{2}}{f}\left( \left( \theta _{1}+\theta
_{2}+t\right) x-fy\right) \frac{\theta _{1}-\theta _{3}}{f}\left( \left(
\theta _{1}+\theta _{3}+t\right) x-fy\right) \frac{\theta _{2}-\theta _{3}}{f%
}\left( \left( \theta _{2}+\theta _{3}+t\right) x-fy\right) \\
=&\frac{\left( \theta _{1}-\theta _{2}\right) \left( \theta _{1}-\theta
_{3}\right) \left( \theta _{2}-\theta _{3}\right) }{f^{3}}\left( \left(
\theta _{1}+\theta _{2}+t\right) x-fy\right) \left( \left( \theta
_{1}+\theta _{3}+t\right) x-fy\right) \left( \left( \theta _{2}+\theta
_{3}+t\right) x-fy\right) \\
=&\frac{\sqrt{discr\left( \phi \right) }}{f^{3}}\left( \left( \theta
_{1}+\theta _{2}+t\right) x-fy\right) \left( \left( \theta _{1}+\theta
_{3}+t\right) x-fy\right) \left( \left( \theta _{2}+\theta _{3}+t\right)
x-fy\right) \\
=&\sqrt{discr\left( \phi \right) }\left( \frac{t^{3}-2pt^{2}+\left(
p^{2}+q\right) t+\left( r-qp\right) }{f^{3}}x^{3}-\frac{3t^{2}-4pt+\left(
p^{2}+q\right) }{f^{2}}x^{2}y+\frac{3t-2p}{f}xy^{2}-y^{3}\right)
\end{eqnarray*}
和输出
使用\begin{align*}
方程超出了边距
答案1
您有太多无用的\left
和\right
。您还应该使用split
而不是eqnarray*
。可以使用 来管理分数,\tfrac
从而使其更小。
\documentclass[11pt,a4paper,oneside]{report}
\usepackage[T1]{fontenc}
\usepackage{fouriernc}
\usepackage{mathtools}
\usepackage{amsthm}
\usepackage{amsfonts}
\usepackage{amssymb}
\begin{document}
\begin{equation*}
\begin{split}
N
&= \tfrac{\theta_{1}-\theta_{2}}{f}
((\theta_{1}+\theta_{2}+t) x-fy)\,
\tfrac{\theta_{1}-\theta_{3}}{f}
((\theta_{1}+\theta_{3}+t) x-fy)\,
\tfrac{\theta_{2}-\theta_{3}}{f}
(( \theta_{2}+\theta_{3}+t) x-fy)
\\
&= \tfrac{(\theta_{1}-\theta_{2})(\theta_{1}-\theta_{3})(\theta_{2}-\theta_{3})}{f^{3}}
((\theta_{1}+\theta_{2}+t) x-fy)\,
((\theta_{1}+\theta_{3}+t) x-fy)\,
((\theta_{2}+\theta_{3}+t) x-fy)
\\
&= \tfrac{\sqrt{\mathit{discr}(\phi)}}{f^{3}}
((\theta_{1}+\theta_{2}+t) x-fy)\,
((\theta_{1}+\theta_{3}+t) x-fy)\,
((\theta_{2}+\theta_{3}+t)x-fy)
\\
&= \sqrt{\mathit{discr}(\phi)}
\left(
\tfrac{t^{3}-2pt^{2}+(p^{2}+q) t+(r-qp)}{f^{3}}x^{3}-
\tfrac{3t^{2}-4pt+(p^{2}+q)}{f^{2}}x^{2}y+
\tfrac{3t-2p}{f}xy^{2}-y^{3}
\right)
\end{split}
\end{equation*}
\end{document}
答案2
以下是我的排版方式:
\documentclass{report}
\usepackage{amsmath}
\DeclareMathOperator{\discr}{discr}
\begin{document}
\noindent Let
\begin{equation*}
g_{i,j}
= (\theta_{i} + \theta_{j} + t)x - fy.
\end{equation*}
Then
\begin{align*}
N
&= \frac{\theta_{1} - \theta_{2}}{f}g_{1,2} \cdot
\frac{\theta_{1} - \theta_{3}}{f}g_{1,3} \cdot
\frac{\theta_{2} - \theta_{3}}{f}g_{2,3}\\
&= \frac{(\theta_{1} - \theta_{2})
(\theta_{1} - \theta_{3})
(\theta_{2} - \theta_{3})}{f^{3}}
\cdot g_{1,2} \, g_{1,3} \, g_{2,3}\\
&= \frac{\sqrt{\discr(\phi)}}{f^{3}}
\cdot g_{1,2} \, g_{1,3} \, g_{2,3}\\
&= \sqrt{\discr(\phi)}
\biggl(\frac{t^{3} - 2pt^{2} + (p^{2} + q)t + (r - qp)}{f^{3}}x^{3}\\
&\hphantom{{}= \sqrt{\discr(\phi)}\biggl(}
- \frac{3t^{2} - 4pt + (p^{2} + q)}{f^{2}}x^{2}y
+ \frac{3t - 2p}{f}xy^{2} - y^{3}\biggr)
\end{align*}
\end{document}
请注意,我根本没有使用任何\left
/\right
结构。另外,下划线前的空格是不必要的,discr
应该(可能)是一个数学运算符,并且eqnarray
环境不太好。
答案3
根据评论中的建议,您可以按如下所示进行编码
\documentclass[11pt,a4paper,oneside]{report}
\usepackage[T1]{fontenc}
\usepackage{fouriernc}
\usepackage{mathtools}
\usepackage{amsthm}
\usepackage{amsfonts}
\usepackage{amssymb}
\begin{document}
\begin{align*}
N &=\frac{\theta _{1}-\theta _{2}}{f}\left( \left( \theta _{1}+\theta
_{2}+t\right) x-fy\right) \frac{\theta _{1}-\theta _{3}}{f}\left( \left(
\theta _{1}+\theta _{3}+t\right) x-fy\right) \frac{\theta _{2}-\theta _{3}}{f%
}\left( \left( \theta _{2}+\theta _{3}+t\right) x-fy\right) \\
&=\frac{\left( \theta _{1}-\theta _{2}\right) \left( \theta _{1}-\theta
_{3}\right) \left( \theta _{2}-\theta _{3}\right) }{f^{3}}\left( \left(
\theta _{1}+\theta _{2}+t\right) x-fy\right) \left( \left( \theta
_{1}+\theta _{3}+t\right) x-fy\right) \left( \left( \theta _{2}+\theta
_{3}+t\right) x-fy\right) \\
&=\frac{\sqrt{discr\left( \phi \right) }}{f^{3}}\left( \left( \theta
_{1}+\theta _{2}+t\right) x-fy\right) \left( \left( \theta _{1}+\theta
_{3}+t\right) x-fy\right) \left( \left( \theta _{2}+\theta _{3}+t\right)
x-fy\right) \\
&=\sqrt{discr\left( \phi \right) }\left( \frac{t^{3}-2pt^{2}+\left(
p^{2}+q\right) t+\left( r-qp\right) }{f^{3}}x^{3}-\frac{3t^{2}-4pt+\left(
p^{2}+q\right) }{f^{2}}x^{2}y+\frac{3t-2p}{f}xy^{2}-y^{3}\right)
\end{align*}
\end{document}
输出: