更新
感谢 John Kormylo,我能够使用以下四个组件绘制 4 结 SQUID: 4 连接鱿鱼构建块 http://www.tau.ac.il/~suhuvale/squid4elem.png
整个 SQUID 4 连接鱿鱼构建块 http://www.tau.ac.il/~suhuvale/squid4jcombined.png 使用以下代码绘制
\documentclass{article}
\usepackage{tikz}
\usepackage{circuitikz}`
\newlength{\ResUp} \newlength{\ResDown}
\newlength{\ResLeft} \newlength{\ResRight}
\newlength{\ResLen} \newlength{\ResRadius}
\newlength{\whereamix} \newlength{\whereamiy}
\makeatletter
\def\TikzBipolePath#1#2{\pgf@circ@bipole@path{#1}{#2}}
\def\CircDirection{\pgf@circ@direction}
\pgf@circ@Rlen = \pgfkeysvalueof{/tikz/circuitikz/bipoles/length}
\setlength{\ResLen}{\pgf@circ@Rlen}
\makeatother
%%%%%%%%%%%%%%%%%%%%%%% squid4 %%%%%%%%%%%%%%%%%%%%%%%%%
\ctikzset{bipoles/squid4/height/.initial=.6}
\ctikzset{bipoles/squid4/width/.initial=.6}
\pgfcircdeclarebipole{}{\ctikzvalof{bipoles/squid4/height}}
{squid4}
{\ctikzvalof{bipoles/squid4/height}}
{\ctikzvalof{bipoles/squid4/width}}
{
\pgfsetlinewidth{\ctikzvalof{bipoles/thickness}\pgfstartlinewidth}
\pgfextractx{\ResRight}{\northeast}
\pgfextracty{\ResUp}{\northeast}
\pgfextractx{\ResLeft}{\southwest}
\pgfextracty{\ResDown}{\southwest}
\pgfpathmoveto{\pgfpoint{1\ResLeft}{0\ResDown}}
\pgfpatharc{0}{-90}{1\ResLeft}%{\pgfpoint{0cm}{0.8\ResUp}}
\pgfpathmoveto{\pgfpoint{0\ResLeft}{-1\ResDown}}
\pgfpatharc{-90}{-45}{1\ResLeft}
\pgfpathlineto{\pgfpoint{0.35\ResLeft}{0.707\ResUp}}
\pgfpathlineto{\pgfpoint{1.064\ResLeft}{0.707\ResUp}}
\pgfpathmoveto{\pgfpoint{0.707\ResLeft}{-0.35\ResDown}}
\pgfpathlineto{\pgfpoint{0.707\ResLeft}{1.064\ResUp}}
\pgfusepath{draw}
}
\def\mysquidpath#1{\TikzBipolePath{squid4}{#1}}
\tikzset{squid4/.style = {\circuitikzbasekey, /tikz/to path=\mysquidpath, l=#1}}
\begin{document}
\begin{circuitikz}[scale=1]
\draw (1,1) to [squid4, i^>=$I_1$] (-1,-1);
\draw (-1,-1) to [squid4, i^<=$I_1$] (1,1);
\draw (1,-1) to [squid4, i^<=$I_2$] (-1,1);
\draw (-1,1) to [squid4, i^>=$I_2$] (1,-1);
\end{circuitikz} \\
\end{document}
我对 3 结 SQUID 仍有疑问。如能得到任何帮助,我将不胜感激。
我正在使用 circuitikz 绘制包含 SQUID 磁力计的电路图。该包包含乌贼标准 2 结 SQUID 的符号。使用代码:
\documentclass{article} \usepackage{tikz} \usepackage{circuitikz} \begin{document} \begin{circuitikz}[scale=1] \draw (0,1.8) to [squid, l^=$J_1$, i^>=$I_2$] (0,-0.5) (0,1.8) to [squid, l_=$J_2$, i>^=$I_1$] (0,-0.5); \end{circuitikz} \end{document}
我可以画出 SQUID:
2 结 SQUID http://www.tau.ac.il/~suhuvale/SQUID2JJ.png
现在,我想画一个像这样的 3 结 SQUID:
3 结 SQUID http://www.tau.ac.il/~suhuvale/SQUID3JJ.png
以及像这样的4结SQUID:
4 结 SQUID http://www.tau.ac.il/~suhuvale/SQUID4JJ.png
我该如何绘制这些符号?
答案1
squid
由于中有一个 2 结 SQUID circuitikz
,因此建议的解决方案修改squid
为\squidthree
和\squidfour
viarenewcommand
语法以绘制 OP 中显示的符号。每个符号都有内部输入/输出标签,称为a1,b1,c1
和a2,b2,c2,d2
逆时针,以便它们可用于连接
代码
\documentclass[border=1cm]{standalone}
\usepackage{tikz}
\usepackage[american,siunitx]{circuitikz}
\newcommand{\squidthree}[1]
{ % #1 = name ,
\draw[thick] (#1) circle (12pt);
\draw (#1) ++(0,12pt) coordinate(a1);
\draw (#1) ++(-135:12pt) coordinate(b1);
\draw (#1) ++(-45:12pt) coordinate(c1);
\draw[rotate=60,line width=1pt] (#1)
+(0,16pt)node[above left]{\tiny${J}_{1}$} -- +(0,8pt)
+(-4pt,12pt) -- +(4pt,12pt);
\draw[rotate=-60,line width=1pt] (#1)
+(0,16pt)node[above right]{\tiny${J}_{3}$} -- +(0,8pt)
+(-4pt,12pt) -- +(4pt,12pt);
\draw[rotate=0,line width=1pt] (#1)
+(0,-16pt)node[below]{\tiny${J}_{2}$} -- +(0,-8pt)
+(-4pt,-12pt) -- +(4pt,-12pt);
}
\newcommand{\squidfour}[1]
{ % #1 = name ,
\draw[thick] (#1) circle (12pt);
\draw (#1) ++(90:12pt) coordinate(a2);
\draw (#1) ++(180:12pt) coordinate(b2);
\draw (#1) ++(270:12pt) coordinate(c2);
\draw (#1) ++(0:12pt) coordinate(d2);
\draw[rotate=45,line width=1pt] (#1)
+(0,16pt)node[above left] {\tiny${J}_{1}$} -- +(0,8pt)
+(0,-16pt)node[below right]{\tiny${J}_{3}$} -- +(0,-8pt)
+(-4pt,12pt) -- +(4pt,12pt)
+(-4pt,-12pt) -- +(4pt,-12pt);
\draw[rotate=-45,line width=1pt] (#1)
+(0,16pt)node[above right]{\tiny${J}_{4}$} -- +(0,8pt)
+(0,-16pt)node[below left]{\tiny${J}_{2}$} -- +(0,-8pt)
+(-4pt,12pt) -- +(4pt,12pt)
+(-4pt,-12pt) -- +(4pt,-12pt);
}
\begin{document}
\begin{circuitikz}[scale=1]
\node at (0,2) {2-junc SQUID};
\draw (0,1) to [squid, l^=$J_1$, i^>=$I_2$] (0,-1)
(0,1) to [squid, l_=$J_2$, i>^=$I_1$] (0,-1);
\node at (3,2) {3-junc SQUID};
\path (3,1) to[squid,color=white,name=S1](3,-1);
\squidthree{S1} % at (2,0)
\draw (3,1.3) to[short,i=$I_1$] (a1);
\draw (b1) to[short,i_=$I_1-I_2$] (2,-1);
\draw (c1) to[short,i=$I_2$] (4,-1);
\node at (6,2){4-junc SQUID};
\path (6,1) to[squid,color=white,name=S2](6,-1);
\squidfour{S2} % at (4,0)
\draw (6,1.3) to[short,i=$I_1$](a2);
\draw (4.7,0) to[short,i=$I_2$](b2);
\draw (c2) to[short,i=$I_1$](6,-1.3);
\draw (d2) to[short,i=$I_2$](7.3,0);
\end{circuitikz}
\end{document}