请在下方找到我想要写入我的 Latex 文档的公式,但不幸的是我无法拆分左括号内的 2 个表达式,因为它们太长了
\begin{equation}
\begin{split}
&F\left(\lambda,\alpha,\beta,c\right) \triangleq \int_0^{\infty}\int_{-\infty}^{\frac{\lambda}{2\gamma_{rd}}} p\left(\gamma_{rd}\right)p\left(y_{rd}\mid \gamma_{rd},c\right)dy_{rd}d\gamma_{rd}= \\
&\left\lbrace
\begin{array}{ll}
1 + \displaystyle{\frac{1}{2}.\{\frac{\mu\left[c\right]\left(\exp\left(-\alpha\beta\right)-1\right) - \sqrt{B_{rd}}}{\sqrt{B_{rd}}}
+ \sqrt{\frac{\pi}{2}}.\exp\left(-\alpha\beta\right).\left(\frac{\lambda}{2\sqrt{\alpha}} - \mu\left[c\right].\sqrt{\alpha}\right).\exp\left(\iota_{\alpha,\beta}\left(\lambda\right)^{2}\right)erfc\left(\iota_{\alpha,\beta}^{+}\left(\lambda\right)\right)\}.\exp\left(\beta_{rd}^{+}\left(c\right)\lambda\right)} & \mbox{if }\lambda\geq0\\
\displaystyle{\frac{1}{2}.\{\frac{\mu\left[c\right]\left(\exp\left(-\alpha\beta\right)-1\right) + \sqrt{B_{rd}}}{\sqrt{B_{rd}}}
+ \sqrt{\frac{\pi}{2}}.\exp\left(-\alpha\beta\right).\left(\frac{\lambda}{2\sqrt{\alpha}} - \mu\left[c\right].\sqrt{\alpha}\right).\exp\left(\iota_{\alpha,\beta}\left(\lambda\right)^{2}\right)erfc\left(\iota_{\alpha,\beta}^{+}\left(\lambda\right)\right)\}.\exp\left(\beta_{rd}^{-}\left(c\right)\lambda\right)} & \mbox{if } \lambda<0
\end{array}\right.
\end{split}
\label{F function}
\end{equation}
你能帮忙吗,我试图在数组中放入另一个分割,但没有成功?
提前致谢
答案1
以下是我的建议。首先,删除几乎全部 \left
并且\right
,只保留其中几个。
然后对两个大函数使用带有底部参考点的内部aligned
,这样它们就可以分成几部分。
一些注意事项:低点是绝不用于表示乘法;要么什么都没有,要么\cdot
(有人\times
在行末使用,我不同意)。此外,“erfc”应该是一个函数名称,用合适的 来解决\DeclareMathOperator
。
\documentclass{article}
\usepackage{amsmath,mathtools,amssymb}
\DeclareMathOperator{\erfc}{erfc}
\begin{document}
\begin{equation}
\begin{split}
&F(\lambda,\alpha,\beta,c) \triangleq
\int_0^{\infty}\int_{-\infty}^{\frac{\lambda}{2\gamma_{rd}}}
p(\gamma_{rd})p(y_{rd}\mid \gamma_{rd},c)\,dy_{rd}\,d\gamma_{rd}= \\
&\qquad
\begin{dcases*}
\begin{aligned}[b]
1 + \frac{1}{2}
\biggl\{
&\frac{\mu[c](\exp(-\alpha\beta)-1) - \sqrt{B_{rd}}}{\sqrt{B_{rd}}} +{}\\
&\sqrt{\frac{\pi}{2}}\exp(-\alpha\beta)
\left(\frac{\lambda}{2\sqrt{\alpha}} - \mu[c]\sqrt{\alpha}\right)\cdot{}\\
&\exp\bigl(\iota_{\alpha,\beta}(\lambda)^{2}\bigr)
\erfc\bigl(\iota_{\alpha,\beta}^{+}(\lambda)\bigr)\biggl\}
\exp\bigl(\beta_{rd}^{+}(c)\lambda\bigr)
\end{aligned} & if $\lambda\geq0$
\\[4ex]
\begin{aligned}[b]
\frac{1}{2}\biggl\{
&\frac{\mu[c](\exp(-\alpha\beta)-1) + \sqrt{B_{rd}}}{\sqrt{B_{rd}}} +{}\\
&\sqrt{\frac{\pi}{2}}\exp(-\alpha\beta)
\left(\frac{\lambda}{2\sqrt{\alpha}} - \mu[c]\sqrt{\alpha}\right)\cdot{}\\
&\exp\bigl(\iota_{\alpha,\beta}(\lambda)^{2}\bigr)
\erfc\bigl(\iota_{\alpha,\beta}^{+}(\lambda)\bigr)\biggl\}
\exp\bigl(\beta_{rd}^{-}(c)\lambda\bigr)
\end{aligned} & if $\lambda<0$
\end{dcases*}
\end{split}
\label{F function}
\end{equation}
\end{document}
答案2
egreg 已经修复了实际问题。但是,以我的拙见,即使它会变得丑陋,至少你也应该让它值得。
因此,我建议采用以下格式,以便读者至少有机会意识到是什么打击了他们;
\documentclass{article}
\usepackage{mathtools,amssymb,lipsum}
\DeclareMathOperator{\erfc}{erfc}
\begin{document}
\lipsum[1]
\begin{equation}
F(\lambda,\alpha,\beta,c) \triangleq
\int_0^{\infty}\int_{-\infty}^{\frac{\lambda}{2\gamma_{rd}}}
p(\gamma_{rd})p(y_{rd}\mid \gamma_{rd},c)\,dy_{rd}\,d\gamma_{rd}
\end{equation}
For nonnegative $\lambda$, this amounts to;
\begin{gather}
\frac{e^{(\beta_{rd}^{+}(c)\lambda)}}{2}\biggl\{
-1+\frac{\mu[c]e^{-\alpha\beta-1}}{\sqrt{B_{rd}}} +
\sqrt{\frac{\pi}{2}}e^{(\iota_{\alpha,\beta}(\lambda)^{2}-\alpha\beta)}
\left(\frac{\lambda}{2\sqrt{\alpha}} - \mu[c]\sqrt{\alpha}\right)
\erfc\bigl(\iota_{\alpha,\beta}^{+}(\lambda)\bigr)\biggl\}
\shortintertext{or for negative $\lambda$}
\frac{e^{(\beta_{rd}^{-}(c)\lambda)}}{2}\biggl\{
1+\frac{\mu[c]e^{-\alpha\beta-1}}{\sqrt{B_{rd}}} +
\sqrt{\frac{\pi}{2}}e^{(\iota_{\alpha,\beta}(\lambda)^{2}-\alpha\beta)}
\left(\frac{\lambda}{2\sqrt{\alpha}} - \mu[c]\sqrt{\alpha}\right)
\erfc\bigl(\iota_{\alpha,\beta}^{+}(\lambda)\bigr)\biggl\}
\end{gather}
\end{document}