我希望前两部分看起来align
好像是align
环境中仅有的两个项目,其余部分在等号处对齐,并由一些空间隔开以表示不同的等式。
现在编译后的效果如下:
因此,我想将前两个对齐如下:
最后我想强调的是
\documentclass{article}
\usepackage{mathtools}
\usepackage{amssymb}
\begin{document}
\begin{alignat*}{2}
\vec{x}_1(t) &=
\begin{pmatrix}
x_1^{(1)}(t)\\
x_2^{(1)}(t)
\end{pmatrix} &&{}=
\begin{pmatrix}
X_1^{(1)}\cos(\omega_1t + \phi_1)\\
r_1X_1^{(1)}\cos(\omega_1t + \phi_1)
\end{pmatrix}\\
\vec{x}_2(t) &=
\begin{pmatrix}
x_1^{(2)}(t)\\
x_2^{(2)}(t)
\end{pmatrix} &&{}=
\begin{pmatrix}
X_1^{(2)}\cos(\omega_2t + \phi_2)\\
r_2X_1^{(2)}\cos(\omega_2t + \phi_2)
\end{pmatrix}\\
r_1 &=
\begin{aligned}
\frac{3k - m\omega_1^2}{2k} && \qquad
X_1^{(1)} &&{}= \frac{1}{r_2 - r_1}\bigg[(r_2x_1(0) - x_2(0))^2 +
\frac{(-r_2\dot{x}_1(0) + \dot{x}_2(0))^2}{\omega_1^2}\bigg]^{1/2}
\end{aligned}\\
r_2 &=
\begin{aligned}
\frac{3k - m\omega_2^2}{2k} && \qquad
X_1^{(2)} &&{}= \frac{1}{r_2 - r_1}\bigg[(-r_1x_1(0) + x_2(0))^2 +
\frac{(r_1\dot{x}_1(0) - \dot{x}_2(0))^2}{\omega_2^2}\bigg]^{1/2}
\end{aligned}\\
\phi_1 &=
\begin{aligned}
\arctan\bigg[\frac{-r_2\dot{x}_1(0) + \dot{x}_2(0)}
{\omega_1^2(r_2x_1(0) - x_2(0))}\bigg] && \qquad
\phi_2 &&{}= \arctan\bigg[\frac{r_1\dot{x}_1(0) - \dot{x}_2(0)}
{\omega_2^2(-r_1x_1(0) + x_2(0))}\bigg]
\end{aligned}
\end{alignat*}
\end{document}
答案1
\documentclass{article}
\usepackage{mathtools}
\usepackage{amssymb}
\begin{document}
\begin{alignat*}{2}
\vec{x}_1(t) &=
\begin{pmatrix}
x_1^{(1)}(t)\\
x_2^{(1)}(t)
\end{pmatrix} =
\mathrlap{\begin{pmatrix}
X_1^{(1)}\cos(\omega_1t + \phi_1)\\
r_1X_1^{(1)}\cos(\omega_1t + \phi_1)
\end{pmatrix}}\\
\vec{x}_2(t) &=
\begin{pmatrix}
x_1^{(2)}(t)\\
x_2^{(2)}(t)
\end{pmatrix} =
\mathrlap{\begin{pmatrix}
X_1^{(2)}\cos(\omega_2t + \phi_2)\\
r_2X_1^{(2)}\cos(\omega_2t + \phi_2)
\end{pmatrix}}\\
r_1 &=
\frac{3k - m\omega_1^2}{2k} &
X_1^{(1)} &= \frac{1}{r_2 - r_1}\bigg[(r_2x_1(0) - x_2(0))^2 +
\frac{(-r_2\dot{x}_1(0) + \dot{x}_2(0))^2}{\omega_1^2}\bigg]^{1/2}
\\
r_2 &=
\frac{3k - m\omega_2^2}{2k} &
X_1^{(2)} &= \frac{1}{r_2 - r_1}\bigg[(-r_1x_1(0) + x_2(0))^2 +
\frac{(r_1\dot{x}_1(0) - \dot{x}_2(0))^2}{\omega_2^2}\bigg]^{1/2}
\\
\phi_1 &=
\arctan\bigg[\frac{-r_2\dot{x}_1(0) + \dot{x}_2(0)}
{\omega_1^2(r_2x_1(0) - x_2(0))}\bigg] &
\phi_2 &= \arctan\bigg[\frac{r_1\dot{x}_1(0) - \dot{x}_2(0)}
{\omega_2^2(-r_1x_1(0) + x_2(0))}\bigg]
\end{alignat*}
\end{document}
答案2
我不明白所提议的布局和随之而来的各种符号的对齐方式应该达到什么目的=
。为了避免给人留下各种方程式以可能不是预期的方式相互关联的印象,我会简化布局,使用单一align*
环境并使用\qquad
语句在需要的地方插入一些水平空格。请注意,使用\biggl[
而不是仅仅\bigg[
遵循这两个\arctan
语句很重要;如果省略l
(mathopen) 说明符,LaTeX 将插入不适当的空格。
\documentclass{article}
\usepackage{amsmath} % for "align*" and "pmatrix" environments
\usepackage{newpxtext} % Palatino text font
\usepackage[euler-digits]{eulervm} % Euler math font
\begin{document}
\begin{align*}
\vec{x}_1(t) &=
\begin{pmatrix}
x_1^{(1)}(t)\\
x_2^{(1)}(t)
\end{pmatrix} =
\begin{pmatrix}
X_1^{(1)}\cos(\omega_1t + \phi_1)\\
r_1X_1^{(1)}\cos(\omega_1t + \phi_1)
\end{pmatrix}\\
\vec{x}_2(t) &=
\begin{pmatrix}
x_1^{(2)}(t)\\
x_2^{(2)}(t)
\end{pmatrix} =
\begin{pmatrix}
X_1^{(2)}\cos(\omega_2t + \phi_2)\\
r_2X_1^{(2)}\cos(\omega_2t + \phi_2)
\end{pmatrix}\\[2ex] % additional vertical space
r_1 &=
\frac{3k - m\omega_1^2}{2k} \qquad
X_1^{(1)} = \frac{1}{r_2 - r_1}\biggl[(r_2x_1(0) - x_2(0))^2 +
\frac{(-r_2\dot{x}_1(0) + \dot{x}_2(0))^2}{\omega_1^2}\biggr]^{1/2}\\
r_2 &=
\frac{3k - m\omega_2^2}{2k} \qquad
X_1^{(2)} = \frac{1}{r_2 - r_1}\biggl[(-r_1x_1(0) + x_2(0))^2 +
\frac{(r_1\dot{x}_1(0) - \dot{x}_2(0))^2}{\omega_2^2}\biggr]^{1/2}\\[2ex] % additional vertical space
\phi_1 &=
\arctan\biggl[\frac{-r_2\dot{x}_1(0) + \dot{x}_2(0)}
{\omega_1^2(r_2x_1(0) - x_2(0))}\biggr] \qquad
\phi_2 = \arctan\biggl[\frac{r_1\dot{x}_1(0) - \dot{x}_2(0)}
{\omega_2^2(-r_1x_1(0) + x_2(0))}\biggr]
\end{align*}
\end{document}