我想将第三列(减去该列的标题)设置为单个单元格。我尝试使用多行和“p”列来实现所需效果,但没有成功。我该怎么做?
以下是我目前所掌握的信息:
\documentclass{article}
\usepackage{lscape}
\usepackage{longtable}
\begin{document}
\begin{landscape}
{\renewcommand{\arraystretch}{1.5}
\begin{longtable}{|p{3in}|p{4in}|p{1in}|}
\hline
\textbf{Conversion} & \textbf{Formulas} & \textbf{Restrictions} \\ \hline
Cylindrical to rectangular: $(r,\theta,z) \to (x,y,z)$ \par Rectangular to cylindrical: $(x,y,z) \to (r,\theta,z)$ & $x = r \cos(\theta)$, $y=r \sin(\theta)$, $z=z$ \par $r=\sqrt{x^2+y^2}$, $\tan(\theta) = y/x$, $z=z$ & {} \\ \hline
Spherical to cylindrical: $(\rho,\theta,\phi) \to (r,\theta,z)$ \par
Cylindrical to spherical: $(r,\theta,z) \to(\rho,\theta,\phi) $ & $r= \rho \sin(\phi)$, $\theta = \theta$, $z = \rho \cos(\phi)$ \par $\rho = \sqrt{r^2+z^2}$, $\theta = \theta$, $\tan(\phi)=r/z$ & $r \ge 0$, $\rho \ge 0$ \par $0 \le \theta \le 2 \pi$ \par $0 \le \phi \le \pi$ \\ \hline
Spherical to rectangular: $(\rho,\theta,\phi) \to (x,y,z)$ \par Rectangular to spherical: $(x,y,z) \to (\rho,\theta,\phi)$ & $x=\rho \sin(\phi) \cos(\theta)$, $y=\rho \sin(\phi) \sin(\theta)$, $z= \rho \cos(\phi)$ \par $\rho = \sqrt{x^2+y^2+z^2}$, $\tan(\theta) = y/x$, $\cos(\phi) = z/\sqrt{x^2+y^2+z^2}$ & {} \\ \hline
\end{longtable}
}
\end{landscape}
\end{document}
答案1
\documentclass{article}
\usepackage[pdftex]{lscape}
\usepackage{array,longtable}
\begin{document}
\begin{landscape}
\renewcommand{\arraystretch}{1.5}
\begin{longtable}{|p{3in}|p{4in}|l|}
\hline
\textbf{Conversion} & \textbf{Formulas} & \textbf{Restrictions} \\ \hline
Cylindrical to rectangular: $(r,\theta,z) \to (x,y,z)$ \par Rectangular to cylindrical: $(x,y,z) \to (r,\theta,z)$ & $x = r \cos(\theta)$, $y=r \sin(\theta)$, $z=z$ \par $r=\sqrt{x^2+y^2}$, $\tan(\theta) = y/x$, $z=z$ & {} \\
\cline{1-2}
Spherical to cylindrical: $(\rho,\theta,\phi) \to (r,\theta,z)$ \par
Cylindrical to spherical: $(r,\theta,z) \to(\rho,\theta,\phi) $ & $r= \rho \sin(\phi)$, $\theta = \theta$, $z = \rho \cos(\phi)$ \par $\rho = \sqrt{r^2+z^2}$, $\theta = \theta$, $\tan(\phi)=r/z$ &
\smash{\begin{tabular}{@{}l@{}}
r \ge 0$, $\rho \ge 0$\\
$0 \le \theta \le 2 \pi$ \\
$0 \le \phi \le \pi$
\end{tabular}}
\\
\cline{1-2}
Spherical to rectangular: $(\rho,\theta,\phi) \to (x,y,z)$ \par Rectangular to spherical: $(x,y,z) \to (\rho,\theta,\phi)$ & $x=\rho \sin(\phi) \cos(\theta)$, $y=\rho \sin(\phi) \sin(\theta)$, $z= \rho \cos(\phi)$ \par $\rho = \sqrt{x^2+y^2+z^2}$, $\tan(\theta) = y/x$, $\cos(\phi) = z/\sqrt{x^2+y^2+z^2}$ & {} \\ \hline
\end{longtable}
\end{landscape}
\end{document}
答案2
使用该包后代码会更简单makecell
,因为它允许在单元格内换行,这样您就不必指定列宽:
\documentclass[a4paper]{article}
\usepackage{lscape}
\usepackage{longtable, multirow}
\usepackage{makecell}
\renewcommand\cellalign{lc}
\usepackage[math]{cellspace}
\setlength\cellspacetoplimit{4pt}
\setlength\cellspacebottomlimit{4pt}
\begin{document}
\begin{landscape}
\begin{longtable}{|Sl|Sl| Sl|}%
\hline
\textbf{Conversion} & \textbf{Formulas} & \textbf{Restrictions} \\
\hline
\makecell{Cylindrical to rectangular: $ (r,θ,z) \to (x,y,z) $ \\[0.7ex] Rectangular to cylindrical: $ (x,y,z) \to (r,θ,z) $} & \makecell{$ x = r \cos(θ) $, $ y = r \sin(θ) $, $ z = z $ \\[0.7ex] $ r = √{x^2+y^2}$, $ \tan(θ) = y/x $, $ z = z $} & \multirowcell{6}[-1.4ex]{ $r ≥ 0$, $ρ ≥ 0$ \\ $0 ≤ θ ≤ 2 \pi$ \\ $0 ≤ ϕ ≤ \pi$} \\
\cline{1-2}
\makecell{Spherical to cylindrical: $ (ρ,θ,ϕ) \to (r, θ, z) $ \\[0.7ex]
Cylindrical to spherical: $ (r, θ, z) \to (ρ, θ, ϕ) $}
& \makecell{$ r= ρ \sin(ϕ) $, $ θ = θ $, $z = ρ \cos(ϕ) $ \\[0.7ex]$ ρ = √{r^2+z^2}$, $ θ = θ $, $ \tan(ϕ)=r/z $} & \\
\cline{1-2}
\makecell{Spherical to rectangular: $(ρ, θ, ϕ) \to (x, y, z)$ \\[0.7ex] Rectangular to spherical: $(x, y, z) \to (ρ, θ, ϕ)$ }& \makecell{$x = ρ \sin(ϕ) \cos(θ) $, $ y = ρ \sin(ϕ) \sin(θ) $, $ z= ρ \cos(ϕ) $ \\[0.7ex] $ ρ = √{x^2+y^2+z^2} $, $ \tan(θ) = y/x $, $ \cos(ϕ) = z/√{x^2+y^2+z^2} $ } &\\
\hline
\end{longtable}
\end{landscape}
\end{document}