tikz 的有效潜力

tikz 的有效潜力

我怎样才能画出一个完美的有效牛顿势图?我试过了,但效果不如我想要的那么好。

\begin{tikzpicture}
\begin{axis}[
xmin=0,
]
\addplot[
red,
smooth,
domain=-5:1,
samples=201,
]
{0.1/x^2-3/x};
\end{axis}
\end{tikzpicture}

换句话说,我需要这样的东西 在此处输入图片描述

答案1

像这样吗?

\begin{tikzpicture}
% Set horizontal range 
\pgfmathsetmacro{\nx}{8}
% Set vertical range 
\pgfmathsetmacro{\ny}{2.5}

\pgfmathsetmacro{\xmin}{2*(sqrt(\ny+1)-1)/\ny}
\pgfmathsetmacro{\xmint}{2/sqrt(\ny)}
\pgfmathsetmacro{\xminb}{4/\ny}
\pgfmathsetmacro{\xmax}{2*\nx}

\begin{axis}[xmin=0,xmax=\xmax,axis x line*=middle, axis y line*=left, xtick=\empty, ytick=\empty]
    \addplot[red,domain=\xmin:\xmax,samples=100]{1/x^2-1/x};
    \addplot[domain=\xminb:\xmax,samples=100]{-1/x};
    \addplot[domain=\xmint:\xmax,samples=100]{1/x^2};
\end{axis}
\end{tikzpicture}

您可以在第一行设置水平和垂直范围,nx 和 ny 的单位是图形最小点的坐标。

答案2

可能是这样的:

 \documentclass{article}
\usepackage{pgfplots}
\pgfplotsset{compat=1.11}
\begin{document}
  \begin{tikzpicture}
\begin{axis}[
xmax=1,
xmin=0,
ymax=10,
ymin=-250,
]
\addplot[
red,
%smooth,       %% this will spoil the plot
domain=-5:5,
samples=1000,thick
]
{0.5/x²-22/x};
\end{axis}
\end{tikzpicture}
\end{document}

在此处输入图片描述

答案3

尝试这个

\documentclass[border=2pt]{standalone}

% Drawing
\usepackage{tikz}
\usepackage{physics}
\usepackage{nicefrac}
\usetikzlibrary{arrows.meta} % to control arrow size
\tikzset{>={Latex[length=4,width=4]}} % for LaTeX arrow head
% Tikz Library

\begin{document}
    \begin{tikzpicture}
        % Axis
        \draw[-latex, thick] (0,-1) -- (0,7) node[left] {$V_{\text{eff}}$};
        \draw[-latex, thick] (0,3) -- (9,3) node[below] {$r$};
        \draw[rounded corners=30,thick] (8,2.8) to[out=180,in=40] (2,0.3) to[out=120,in=-85] (0.2,7) ;
        \draw[dashed,rounded corners=30,thick] (3,1.14) to[out=220,in=60] (1.2,-1);
        \node[left=3] at (0,3) {$E_{\text{parabola}}$};
        \draw[dashed] (0,0.75)--(2.2,0.75);
        \node[left=15] at (0,0.75) {$E_{\text{circle}}$};
        \draw[<-,gray] (2.2,0.6)  to[out=-60,in=170](6,-0.1)node[below right]{$\boxed{\grad{V}=\nicefrac{mv^2}{r}}$};
        \draw[dashed] (0,2)--(4.25,2);
        \node[left=13] at (0,2) {$E_{\text{ellipse}}$};
        \draw[dashed] (0,5)--(0.425,5);
        \node[left] at (0,5) {$E_{\text{hyperbola}}$};
        \draw[dashed] (2.2,.75)--(2.2,3);
        \node[above] at (2.2,3) {$r_{\text{circle}}$};
        \draw[dashed] (1.1,2)--(1.1,3);
        \node[above] at (1.1,3) {$r_{\text{min}}$};
        \fill (1.1,2) circle (2pt) node[below left,scale=0.4] {$E=V_{\text{eff}}(r_{\text{min}})$};
        \draw[dashed] (4.3,2)--(4.3,3);
        \fill (4.3,2) circle (2pt) node[below right,scale=0.4] {$E=V_{\text{eff}}(r_{\text{max}})$};
        \node[above] at (4.3,3) {$r_{\text{max}}$};
        \node[right] at (1.8,-0.3) {$L=0$};
        \draw[<->,thick] (2.3,0.75)--(2.3,2);
        \draw[<-] (2.4,1.5) to[out=0,in=180] (5,1) node[right] {Radial Kinetic Energy};
        \node at (6,6) {$\boxed{V_{\text{eff}}=-\frac{k}{r^n}+\frac{L^2}{2mr^2}}$};
    \end{tikzpicture}
    
\end{document}

输出

相关内容