如果我想打乱题目顺序,准备四份题目相同,但题目编号不同的试卷,该怎么办?
\documentclass[12pt,a4paper]{exam}
\usepackage{amsmath,amsthm,amsfonts,amssymb,dsfont}
\setlength\parindent{0pt}
%usage \choice{ }{ }{ }{ }
%(A)(B)(C)(D)
\newcommand{\fourch}[4]{
\par
\begin{tabular}{*{4}{@{}p{0.23\textwidth}}}
(a)~#1 & (b)~#2 & (c)~#3 & (d)~#4
\end{tabular}
}
%(A)(B)
%(C)(D)
\newcommand{\twoch}[4]{
\begin{tabular}{*{2}{@{}p{0.46\textwidth}}}
(a)~#1 & (b)~#2
\end{tabular}
\par
\begin{tabular}{*{2}{@{}p{0.46\textwidth}}}
(c)~#3 & (d)~#4
\end{tabular}
}
%(A)
%(B)
%(C)
%(D)
\newcommand{\onech}[4]{
\par
(a)~#1 \par (b)~#2 \par (c)~#3 \par (d)~#4
}
\newlength\widthcha
\newlength\widthchb
\newlength\widthchc
\newlength\widthchd
\newlength\widthch
\newlength\tabmaxwidth
\setlength\tabmaxwidth{0.96\textwidth}
\newlength\fourthtabwidth
\setlength\fourthtabwidth{0.25\textwidth}
\newlength\halftabwidth
\setlength\halftabwidth{0.5\textwidth}
\newcommand{\choice}[4]{%
\settowidth\widthcha{AM.#1}\setlength{\widthch}{\widthcha}%
\settowidth\widthchb{BM.#2}%
\ifdim\widthch<\widthchb\relax\setlength{\widthch}{\widthchb}\fi%
\settowidth\widthchb{CM.#3}%
\ifdim\widthch<\widthchb\relax\setlength{\widthch}{\widthchb}\fi%
\settowidth\widthchb{DM.#4}%
\ifdim\widthch<\widthchb\relax\setlength{\widthch}{\widthchb}\fi%
\ifdim\widthch<\fourthtabwidth
\fourch{#1}{#2}{#3}{#4}
\else\ifdim\widthch<\halftabwidth
\ifdim\widthch>\fourthtabwidth
\twoch{#1}{#2}{#3}{#4}
\else
\onech{#1}{#2}{#3}{#4}
\fi
\fi\fi
}
\begin{document}
\begin{questions}
\question If $a = 3 + i$ and $z = 2 - 3i$ then the points on the Argand diagram
representing az, 3az and - az are
\choice{Vertices of a right angled triangle}{ Vertices of an equilateral
triangle}{Vertices of an isosceles triangle}{Collinear}
\question If z represents a complex number then $\arg (z) + \arg\left(\bar z\right)$ is
\choice{$\dfrac{\pi}{4}$}{$\dfrac{\pi}{2}$}{0}{$\dfrac{\pi}{6}$}
\question If the amplitude of a complex number is $\dfrac{\pi}{2}$ then the number is
\choice{ purely imaginary}{purely real}{0}{neither real nor imaginary}
\question The value of $i + i^{22} + i^{23} + i^{24} + i^{25}$ is
\choice{i}{-i}{1}{-1}
\question The volume generated by
rotating the triangle with vertices at
(0, 0), (3, 0) and (3, 3) about x-axis is
\choice{$18\pi$}{$2\pi$}{$36\pi$}{$9\pi$}\end{questions}
\end{document}
\end{document}
也就是说,我需要将上面给出的试卷标记为代码 A。并且我需要打印另一张标记为代码 B 的试卷,并且在此试卷中,第一个问题的代码 A 应该在问题编号 5 中(比如说),类似地,其他问题也应该有不同的位置......
答案1
你去做考试设计。这里我分享了一个作品。你可以在 sharelatex 中打开它。访问:https://www.sharelatex.com/project/52e3f06d3cf27e7a050000ee