我正在尝试将方程式进一步缩进 - 基本上是为了实现两级缩进。
让我再解释一下...
我有以下内容:
\documentclass{article}
\usepackage{parskip}
\usepackage{amssymb}
\usepackage[fleqn]{amsmath}
\begin{document}
Suppose we want to compute $\nu(u_1)$, we first consider $Y_1$.\\ So $Y_1=A\setminus S_1=\{country, genre\}$, and we have that:\\
\begin{align*}
\nu(u_1)&=\exists(country, genre)(u\,'_1\wedge u\,'_2\wedge u\,'_3)\\
&=\exists(country, genre)(\varphi\,'_1(cd, member, band)\wedge\\
&\varphi\,'_2(cd,member, date)\wedge\\
&\varphi\,'_3(cd, member,country))
\end{align*}
We now want to prove that similarity conditions hold for these three functions we defined.\\
\end{document}
由此产生了如下结果:
现在,我想要进一步缩进这个等式中的第三行和第四行,这样它们就会与对齐\varphi\,'_1
。
我尝试采用建议的方法这里,并添加双 && 来增加缩进级别:
\documentclass{article}
\usepackage{parskip}
\usepackage{amssymb}
\usepackage[fleqn]{amsmath}
\begin{document}
Suppose we want to compute $\nu(u_1)$, we first consider $Y_1$.\\ So $Y_1=A\setminus S_1=\{country, genre\}$, and we have that:\\
\begin{align*}
\nu(u_1)&=\exists(country, genre)(u\,'_1\wedge u\,'_2\wedge u\,'_3)\\
&=\exists(country, genre)(&&\varphi\,'_1(cd, member, band)\wedge\\
& &&\varphi\,'_2(cd,member, date)\wedge\\
& &&\varphi\,'_3(cd, member,country))
\end{align*}
We now want to prove that similarity conditions hold for these three functions we defined.\\
\end{document}
但这产生了糟糕的输出:
虽然这三个\varphi
现在对齐了,但它们不必要地被推到了右边,这显然不是我想要的……
我怎样才能正确实现第二级缩进?
任何帮助将不胜感激。
答案1
\documentclass{article}
\usepackage{parskip}
\usepackage{amssymb}
\usepackage[fleqn]{amsmath}
\begin{document}
Suppose we want to compute $\nu(u_1)$, we first consider $Y_1$.\\
So $Y_1=A\setminus S_1=\{\mathit{country}, \mathit{genre}\}$, and we have that:\\
\begin{align*}
\nu(u_1)&=\exists(\mathit{country}, \mathit{genre})(u\,'_1\wedge u\,'_2\wedge u\,'_3)\\
&=\exists(\mathit{country}, \mathit{genre})(
\!\begin{aligned}[t]
&\varphi\,'_1(\mathit{cd}, \mathit{member}, band)\wedge\\
& \varphi\,'_2(\mathit{cd},\mathit{member}, date)\wedge\\
& \varphi\,'_3(\mathit{cd}, \mathit{member},\mathit{country}))
\end{aligned}
\end{align*}
We now want to prove that similarity conditions hold for these
three functions we defined.
\end{document}
您可以在内使用split
或,但请注意,不要对多字母标识符使用数学斜体,并且不要用aligned
align
\\
答案2
\varphi
同样,只需制作以下行,即可从 OP 的第一个 MWE 获得结果\Longunderstack
:
\documentclass{article}
\usepackage{parskip}
\usepackage{amssymb}
\usepackage[fleqn]{amsmath}
\usepackage[usestackEOL]{stackengine}
\stackMath
\begin{document}
Suppose we want to compute $\nu(u_1)$, we first consider $Y_1$.\\ So $Y_1=A\setminus S_1=\{country, genre\}$, and we have that:\\
\begin{align*}
\nu(u_1)&=\exists(country, genre)(u\,'_1\wedge u\,'_2\wedge u\,'_3)\\
&=\exists(country, genre)(\Longunderstack[l]{
\varphi\,'_1(cd, member, band)\wedge\\
\varphi\,'_2(cd,member, date)\wedge\\
\varphi\,'_3(cd, member,country))
}
\end{align*}
We now want to prove that similarity conditions hold for these three functions we defined.\\
\end{document}