有人能帮我用 IEEEeqnarray 或 eqnarray 结构写出以下长表达式吗?
\documentclass[10pt,a4paper]{article}
\pagestyle{plain}
\usepackage{amsmath}
\usepackage{amsthm}
\usepackage{bm}
\usepackage{IEEEtrantools}
\begin{document}
\begin{IEEEeqnarray*}{rCl}
\Sigma^{*}(\hat{\bm{\beta}}^{S+})&=&E\left[\lim_{n\rightarrow\infty}\sqrt{n}(\hat{\bm{\beta}}^{S+}-\bm{\beta})\sqrt{n}(\hat{\bm{\beta}}^{S+}-\bm{\beta})^{'}\right]\\
&=&E\left[\lim_{n\rightarrow\infty}\sqrt{n}\left\{\hat{\bm{\beta}}^{S}-\left(1-(p_{2}-2)D^{-1}_{n}\right)I(D_{2}<p_{2}-2)(\hat{\bm{\beta}}-\tilde{\bm{\beta}})-\bm{\beta}\right\}\right]\\
&& \times \>
\end{IEEEeqnarray*}
\end{document}
答案1
这应该可以让你开始了。
使用aligned
环境将方程分成两行。
平均能量损失
\documentclass[10pt,a4paper]{article}
\pagestyle{plain}
\usepackage{amsmath}
\usepackage{amsthm}
\usepackage{bm}
\usepackage{IEEEtrantools}
\begin{document}
\begin{IEEEeqnarray*}{rCl}
\Sigma^{*}(\hat{\bm{\beta}}^{S+})&=
&E\left[\lim_{n\rightarrow\infty}\sqrt{n}(\hat{\bm{\beta}}^{S+}-\bm{\beta})\sqrt{n}
(\hat{\bm{\beta}}^{S+}-\bm{\beta})^{'}\right]\\
&=&E\left[\lim_{n\rightarrow\infty}\left\{
\begin{aligned}
&\sqrt{n}\left\{\hat{\bm{\beta}}^{S}-\left(1-(p_{2}-2)D^{-1}_{n}\right)I(D_{2}<p_{2}-2)
(\hat{\bm{\beta}}-\tilde{\bm{\beta}})-\bm{\beta}\right\}\\
&\times\sqrt{n}\left\{\hat{\bm{\beta}}^{S}-\left(1-(p_{2}-2)D^{-1}_{n}\right)I(D_{2}<p_{2}-2)
(\hat{\bm{\beta}}-\tilde{\bm{\beta}})-\bm{\beta}\right\}'
\end{aligned}\right\}\right]
\end{IEEEeqnarray*}
\end{document}
编辑
由于您要求制作两行连续的线条,所以就在这里,但请注意,我只是复制了前一行,并没有在图像中排版公式......请将其替换为您的公式。
\documentclass[10pt,a4paper]{article}
\pagestyle{plain}
\usepackage{amsmath}
\usepackage{amsthm}
\usepackage{bm}
\usepackage{IEEEtrantools}
\begin{document}
\begin{IEEEeqnarray*}{rCl}
\Sigma^{*}(\hat{\bm{\beta}}^{S+})&=
&E\left[\lim_{n\rightarrow\infty}\sqrt{n}(\hat{\bm{\beta}}^{S+}-\bm{\beta})\sqrt{n}
(\hat{\bm{\beta}}^{S+}-\bm{\beta})^{'}\right]\\
&=&E\left[\lim_{n\rightarrow\infty}\left\{
\begin{aligned}
&\sqrt{n}\left\{\hat{\bm{\beta}}^{S}-\left(1-(p_{2}-2)D^{-1}_{n}\right)I(D_{2}<p_{2}-2)
(\hat{\bm{\beta}}-\tilde{\bm{\beta}})-\bm{\beta}\right\}\\
&\times\sqrt{n}\left\{\hat{\bm{\beta}}^{S}-\left(1-(p_{2}-2)D^{-1}_{n}\right)I(D_{2}<p_{2}-2)
(\hat{\bm{\beta}}-\tilde{\bm{\beta}})-\bm{\beta}\right\}'
\end{aligned}\right\}\right]\\
&=&E\left[\lim_{n\rightarrow\infty}\left\{
\begin{aligned}
&\sqrt{n}\left\{\hat{\bm{\beta}}^{S}-\left(1-(p_{2}-2)D^{-1}_{n}\right)I(D_{2}<p_{2}-2)
(\hat{\bm{\beta}}-\tilde{\bm{\beta}})-\bm{\beta}\right\}\\
&\times\sqrt{n}\left\{\hat{\bm{\beta}}^{S}-\left(1-(p_{2}-2)D^{-1}_{n}\right)I(D_{2}<p_{2}-2)
(\hat{\bm{\beta}}-\tilde{\bm{\beta}})-\bm{\beta}\right\}'
\end{aligned}\right\}\right]
\end{IEEEeqnarray*}
\end{document}