(1). 如何CAB
如此精确地画出角的角平分线? (2). 如何P
在角平分线上引入一个点,比如说?注意CP
和BP
必须是垂直的。
\documentclass[11pt,a4paper]{article}
\usepackage{blindtext}
\usepackage{tkz-euclide}
\usetkzobj{all}
\usepackage{color}
\begin{document}
\begin{center}
\begin{tikzpicture}
\tkzDefPoint(0,0){M}
\tkzDefPoint(1.5,0){A}
\tkzLabelPoints[below](A)
\tkzDefPoint(12,0){N}
\tkzDefPoint(10.5,0){B}
\tkzLabelPoints[below](B)
\tkzDrawSegment(M,N)
\tkzDefPoint(9.0,7){L}
\tkzDefPoint(7,5.1){C}
\tkzLabelPoints[above](C)
\tkzDrawSegment(A,L)
\end{tikzpicture}
\end{center}
\end{document}
答案1
我搞不清楚 CP 和 BP 应该在哪里垂直。所以这是另一种变体。
\documentclass[11pt,a4paper]{article}
\usepackage{blindtext}
\usepackage{tkz-euclide}
\usetkzobj{all}
\usepackage{color}
\begin{document}
\begin{center}
\begin{tikzpicture}
\tkzDefPoint(0,0){M}
\tkzDefPoint(1.5,0){A}
\tkzLabelPoints[below](A)
\tkzDefPoint(12,0){N}
\tkzDefPoint(10.5,0){B}
\tkzLabelPoints[below](B)
\tkzDrawSegment(M,N)
\tkzDefPoint(9.0,7){L}
\tkzDefPoint(7,5.1){C}
\tkzLabelPoints[above](C)
\tkzDrawSegment(A,L)
\tkzDefLine[bisector](B,A,C)\tkzGetPoint{a}
\tkzDrawSegment(A,a)
\tkzDefPointWith[linear,K=0.6](A,a) \tkzGetPoint{D}
\tkzDefPointBy[projection=onto A--C](D)
\tkzGetPoint{h}
\tkzDrawSegment(D,h)
\tkzMarkRightAngle[fill=lightgray](A,h,D)
%
\tkzDefPointBy[projection=onto A--B](D)
\tkzGetPoint{g}
\tkzDrawSegment(D,g)
\tkzMarkRightAngle[fill=lightgray](A,g,D)
\end{tikzpicture}
\end{center}
\end{document}
答案2
您缺少的主要命令是\tkzDefMidPoint
和\tkzDefPointBy[projection=onto...]
,您可以按如下方式使用它们:
\tkzDefMidPoint(B,C)
\tkzGetPoint{P}
\tkzDefPointBy[projection=onto A--P](B)
\tkzGetPoint{R}
虽然文档是法语的,它包含很多图片,所以通常不难找到命令。
\documentclass[11pt,a4paper]{article}
\usepackage{tikz}
\usepackage{tkz-euclide}
\usetkzobj{all}
\usepackage{color}
\begin{document}
\begin{center}
\begin{tikzpicture}
\tkzDefPoint(0,0){M}
\tkzDefPoint(1.5,0){A}
\tkzLabelPoints[below](A)
\tkzDefPoint(12,0){N}
\tkzDefPoint(10.5,0){B}
\tkzLabelPoints[below](B)
\tkzDrawSegment(M,N)
\tkzDefPoint(9.0,7){L}
\tkzDefPoint(7,5.1){C}
\tkzLabelPoints[above](C)
\tkzDrawSegment(A,L)
\tkzDefMidPoint(B,C)
\tkzGetPoint{P}
\tkzDefPointBy[projection=onto A--P](B)
\tkzGetPoint{R}
\tkzDefPointBy[projection=onto A--P](C)
\tkzGetPoint{S}
\tkzDrawSegment(B,R)
\tkzDrawSegment(A,R)
\tkzDrawSegment(C,S)
\tkzDrawSegment(A,S)
\tkzDrawPoints(A,B,C,P)
\tkzLabelPoints(P)
\end{tikzpicture}
\end{center}
\end{document}
答案3
使用 MetaPost(在 LuaLaTeX 程序中)进行快速而粗略的尝试,希望它能引起一些人的兴趣。我这样做,就好像 MetaPost 无法自己计算给定角度的一半一样,并构造角平分线,通过角顶点和点 P,计算为两条垂直线的交点。(抱歉我的英语不太准确。)变量在whatever
这里派上用场了。
画直角标记的宏不是我的,我借用了Metafun 手册作者:汉斯·哈根。
\documentclass{standalone}
\usepackage{luamplib}
\mplibtextextlabel{enable}
\begin{document}
\begin{mplibcode}
vardef mark_right_angle (expr common, endofa, endofb, mark_size) =
save tn ; tn := turningnumber(common -- endofa -- endofb -- cycle) ;
((1, 0) -- (1, 1) -- (0, 1))
zscaled (mark_size*unitvector((1+tn)*endofa + (1-tn)*endofb - 2*common))
shifted common
enddef ;
beginfig(1);
u := cm; pair B, C, P;
C = 5u*unitvector (5, 6); B = 5u*unitvector (7, 0);
draw origin -- 1.25C; draw u*(-1, 0) -- 1.5B;
P = whatever[C, C + C rotated -90] = whatever[B, B + B rotated 90];
draw C -- P -- B; draw origin -- 1.3P;
draw mark_right_angle(C, origin, P, 2mm); draw mark_right_angle(B, origin, P, 2mm);
label.bot("$A$", origin); label.bot("$B$", B); label.ulft("$C$", C); label.lrt("$P$", P);
setbounds currentpicture to bbox currentpicture scaled 1.1;
endfig;
\end{mplibcode}
\end{document}
答案4
我设置了一个新的简单的 tikz 命令来绘制角平分线。只需指定角度顶点,即可绘制角平分线。此命令基于尺规构造(几何),可以用基本几何来证明。
\documentclass{article}
%\usepackage{ctex}
%
%\usepackage{calc}
%\usepackage{xcolor}
%\usepackage{graphicx}
\usepackage{tikz}
\usetikzlibrary{
calc,
intersections,
angles,
quotes}
%
%\usepackage{animate}
%
%自定义函数,完成角ABC的平分线
%Customize the function to complete the bisector of angle ABC
\newcommand{\bisector}[3]{
\path [dash dot] (#3) -- ++($(#1)-(#2)$) node [](P4){}; % CD//BA
%计算CB的长度,并在CD上确定点E,使得CE=CB
%Calculate the length of CB and determine the point E on CD such that CE = CB
\path [] let \p1 = ($(#3)-(#2)$) in ($(#3)!veclen(\x1,\y1)!(P4)$) node[](P5){};
% 连接BE,即得到角B的平分线
%Connect BE to get the bisector of angle ABC
\path [draw, color=red,
%name path=bisectorN
name path=b#1#2#3 %命名角平分线路径,以三个顶点来区分不同的角平分线。Name the paths to distinguish the different angle bisectors by their three vertices.
](#2) -- (P5)
pic[
%"$\alpha$",
draw=orange,
<->,
angle eccentricity=1.2,
angle radius=1cm
]
{angle=P5--#2--#3}
;
%
}
\begin{document}
\title{My command bisector}
\maketitle
\begin{figure}
\centering
\begin{tikzpicture}
\draw [help lines](0,0)grid(4,4);
%
\draw(0,0) coordinate (A) node[left] {A}
-- (4,0) coordinate (B) node[right] {B} %
-- (4,4) coordinate (C) node[above] {C};
\bisector{C}{B}{A};
%
\path[name path=AC](A)--(C);
\path[name intersections={of=bCBA and AC}] (intersection-1)node[](D){D};
%验证是否正确,注意顶点的顺序
%Verify the half of angle ABC, pay attention to the order of the vertices
%%计算 angle ABD,正向代表逆时针转动
%%Calculate angle ABD, positive for counterclockwise rotation
\pgfmathanglebetweenlines{\pgfpointanchor{D}{center}}{\pgfpointanchor{B}{center}}{\pgfpointanchor{A}{center}}{\pgfpointanchor{B}{center}} %
%%%将得到的角度作为变量
%Use the resulting angle as a variable
\edef\angN{\pgfmathresult}
\node at(2,0.5) {\angN};
%
\bisector{A}{B}{C};
\pgfmathanglebetweenlines{\pgfpointanchor{A}{center}}{\pgfpointanchor{B}{center}}{\pgfpointanchor{D}{center}}{\pgfpointanchor{B}{center}}
%将得到的角度作为变量
%Use the resulting angle as a variable
\edef\angN{\pgfmathresult}
\node at(4,-1) {\angN} ;
\end{tikzpicture}
\caption{bisector:angle}
\end{figure}
\begin{figure}
\centering
\begin{tikzpicture}
\draw (0,0)coordinate[label=A](A)--(4,0)coordinate[label=D](D)--($(D)!0.5!60:(A)$)coordinate[label=C](C)--+($(A)-(D)$)coordinate[label=B](B)--cycle;
\draw[name path=AC](A)--(C) [name path=BD](B)--(D);
\path[name intersections={of=AC and BD}](intersection-2)coordinate[label=O](O);%注意intersection-2!竟然有3个交点。
\bisector{B}{A}{D};
\path[name path=BC] (B)--(C);
\path [name intersections={of= BC and bBAD}](intersection-1)coordinate[label=E](E);
\draw (A)--(E) (O)--(E);
%
\draw[dashed] (E)--($(A)!2!(E)$)coordinate[label=F](F) (C)--(F);
%
\bisector{D}{C}{B};
\path[name path=AD] (A)--(D);
\path [name intersections={of= AD and bDCB}](intersection-1)coordinate[label=G](G);
\draw (C)--(G) (O)--(G);
% %
\draw[dashed] (G)--($(C)!2!(G)$)coordinate[label=H](H) (G)--(H);
\end{tikzpicture}
\caption{bisector:Parallelogram}
\end{figure}
\end{document}