我的数字不在原处

我的数字不在原处
\documentclass{article}      % Specifies the document class
\usepackage[pdftex]{graphicx}        % To use graphics and insert images
\usepackage[utf8]{inputenc}         % handle french é,è etc.
\usepackage[T1]{fontenc}
\graphicspath{ {C:/Users/Ralph/Documents/CiSA/MathPaper/}} % Path for the image
\usepackage{lipsum}


\title{Study of curve formed from a processed quadrilateral}  % Declares the document's title.
\author{ME}      % Declares the author's name.
\date{April 8, 2015}      % Deleting this command produces today's date.
\begin{document}
\maketitle
\section{Introduction}
\lipsum[1]
\section{Methodology}
\subsection{Processing the square}
The initial shape is a square, to produce a closed curve from the initial shape, we follow a list of procedures that we iterate it infinitely. 

\begin{figure}
    \centering
    \includegraphics[scale=0.4]{iter1}
    \caption{Initial quadrilateral}
\end{figure}

This list of procedure is like so :
On each side of the square, a middle point is drawn M$_{x}$.

\begin{figure}
    \centering
    \includegraphics[scale=0.4]{midpoints}
    \caption{Initial quadrilateral}
\end{figure}

Then a point in the middle of every pair of adjacent points (A$_{x}$) is drawn. For example there will be one between M$_1$ and A, one between A and M$_2$, etc.

\begin{figure}
    \centering
    \includegraphics[scale=0.4]{newPoints}  
    \caption{Initial quadrilateral}
\end{figure}

A polygon is drawn to link all the (A$_{x}$) and it is processed with the same procedure.

\begin{figure}
    \centering
    \includegraphics[scale=0.4]{newPoly}
    \caption{Initial quadrilateral}
\end{figure}

\subsection{Analysis of the curve}
Our first guess was that the infinite process will result in a perfect circle. After doing a few iteration with a simple JavaScript algorithm and the GeoGebra application, we discovered that the shape we get is not a circle.

\begin{figure}
    \centering
    \includegraphics[scale=0.6]{iter5}
    \caption{Initial quadrilateral}
\end{figure}

A simple comparison of the length of g (21.55) and h (22.15), two segments linking the center of the figure with a random point on it, confirms that it is not a circle.


\end{document}               % End of document.

我的图像应该出现在描述它们的段落之后(就像在我的代码中一样),但它们都按顺序出现在最后一段之前(简单比较......)。 我的代码有什么问题?这是我得到的

答案1

figure方法漂浮而浮动元素的设计初衷就是浮动。LaTeX 会将它们放置在它认为最合适的位置。如果您不想让它们移动,请不要使用环境figure。您可以使用\captionof来自caption或的命令capt-of来设置标题。

\documentclass{article}      % Specifies the document class
\usepackage[demo]{graphicx}        % To use graphics and insert images
\usepackage[utf8]{inputenc}         % handle french é,è etc.
\usepackage[T1]{fontenc}
\graphicspath{ {C:/Users/Ralph/Documents/CiSA/MathPaper/}} % Path for the image
\usepackage{lipsum}
\usepackage{caption}

\title{Study of curve formed from a processed quadrilateral}  % Declares the document's title.
\author{ME}      % Declares the author's name.
\date{April 8, 2015}      % Deleting this command produces today's date.
\begin{document}
  \maketitle
  \section{Introduction}
  \lipsum[1]
  \section{Methodology}
  \subsection{Processing the square}
  The initial shape is a square, to produce a closed curve from the initial shape, we follow a list of procedures that we iterate it infinitely.

  \begin{center}
    \includegraphics[scale=0.4]{iter1}
    \captionof{figure}{Initial quadrilateral}
  \end{center}

  This list of procedure is like so :
  On each side of the square, a middle point is drawn M$_{x}$.

  \begin{center}
    \includegraphics[scale=0.4]{midpoints}
    \captionof{figure}{Initial quadrilateral}
  \end{center}

  Then a point in the middle of every pair of adjacent points (A$_{x}$) is drawn. For example there will be one between M$_1$ and A, one between A and M$_2$, etc.

  \begin{center}
    \includegraphics[scale=0.4]{newPoints}
    \captionof{figure}{Initial quadrilateral}
  \end{center}

  A polygon is drawn to link all the (A$_{x}$) and it is processed with the same procedure.

  \begin{center}
    \includegraphics[scale=0.4]{newPoly}
    \captionof{figure}{Initial quadrilateral}
  \end{center}

  \subsection{Analysis of the curve}
  Our first guess was that the infinite process will result in a perfect circle. After doing a few iteration with a simple JavaScript algorithm and the GeoGebra application, we discovered that the shape we get is not a circle.

  \begin{center}
    \includegraphics[scale=0.6]{iter5}
    \captionof{figure}{Initial quadrilateral}
  \end{center}

  A simple comparison of the length of g (21.55) and h (22.15), two segments linking the center of the center with a random point on it, confirms that it is not a circle.


\end{document}

相关内容