创建空白空间 - 公式表

创建空白空间 - 公式表

这是我第一次来这里,而且我对乳胶也还很陌生,但我已经设法(借助我在网上找到的模板)制作了这张漂亮的三列公式表。我的问题是我需要在第一页的中间列上方留出一个间隙,只是一个空白处。我试过使用,\vspace但没有成功。想知道我是否可以在这里找到帮助。

(抱歉,格式化我尽力了)

\documentclass[12pt,landscape]{article}
\usepackage{multicol}
\usepackage{calc}
\usepackage{ifthen}
\usepackage[portrait]{geometry}
\usepackage{hyperref}
\usepackage{amsmath}


% To Do:
% \listoffigures \listoftables
% \setcounter{secnumdepth}{0}


% This sets page margins to .5 inch if using letter paper, and to 1cm
% if using A4 paper. (This probably isn't strictly necessary.)
% If using another size paper, use default 1cm margins.
\ifthenelse{\lengthtest { \paperwidth = 11in}}
{ \geometry{top=.5in,left=.5in,right=.5in,bottom=.5in} }
{\ifthenelse{ \lengthtest{ \paperwidth = 297mm}}
{\geometry{top=1cm,left=1cm,right=1cm,bottom=1cm} }
{\geometry{top=1cm,left=1cm,right=1cm,bottom=1cm} }
} 

% Turn off header and footer
\pagestyle{empty}


% Redefine section commands to use less space
\makeatletter
\renewcommand{\section}{\@startsection{section}{1}{0mm}%
{-1ex plus -.5ex minus -.2ex}%
{0.5ex plus .2ex}%x
{\normalfont\large\bfseries}}
\renewcommand{\subsection}{\@startsection{subsection}{2}{0mm}%
{-1explus -.5ex minus -.2ex}%
{0.5ex plus .2ex}%
{\normalfont\normalsize\bfseries}}
\renewcommand{\subsubsection}{\@startsection{subsubsection}{3}{0mm}%
{-1ex plus -.5ex minus -.2ex}%
{1ex plus .2ex}%
{\normalfont\small\bfseries}}
\makeatother

% Define BibTeX command
\def\BibTeX{{\rm B\kern-.05em{\sc i\kern-.025em b}\kern-.08em
    T\kern-.1667em\lower.7ex\hbox{E}\kern-.125emX}}

% Don't print section numbers
\setcounter{secnumdepth}{0}


\setlength{\parindent}{0pt}
\setlength{\parskip}{0pt plus 0.5ex}


% -----------------------------------------------------------------------

\begin{document}

\raggedright
\footnotesize
\begin{multicols}{3}


    % multicol parameters
    % These lengths are set only within the two main columns
    %\setlength{\columnseprule}{0.25pt}
    \setlength{\premulticols}{1pt}
    \setlength{\postmulticols}{1pt}
    \setlength{\multicolsep}{1pt}
    \setlength{\columnsep}{2pt}



    \section{Mechanics}


        $v=u+at$    \\
        \vspace{1mm}
        $s=\frac{v+u}{2}t$. \\
        \vspace{1mm}
        \vspace{1mm}
        $v^2=u^2+2as$      \\
        \vspace{1mm}
        $s=ut+\frac{1}{2}at^2$  \\
        \vspace{1mm}
        $p=mv$    \\
        \vspace{1mm} 
        $\sum F= \frac{dp}{dt}$  \\
        \vspace{1mm}
        $\int_{t_1}^{t_2}Fdt=p_2-p_1$ - Impulse \\
        \vspace{1mm}
        $P=\frac{F}{A}$ \\
        \vspace{1mm}
        $F=ma$\\
        \vspace{1mm}
        $E_k=1/2mv^2$ \\
        \vspace{1mm}
        $\mu=Fd_\perp$ - moment \\
        \vspace{1mm}
        $E_p=mgh$\\
        \vspace{1mm}
        $W=\int F \cdot dx=F\Delta x$\\
        \vspace{1mm}
        $P_{avg}=\frac{\Delta W}{\Delta t}$\\
        \vspace{1mm}
        $P_{inst}=\frac{dW}{dT}=F\cdot v$\\
        \vspace{1mm}
        \section{Torque}
        $\tau=Fd_{\perp}$ - About midpoint\\
        \vspace{1mm}
        $\tau=r \times F$ - vector torque\\
        \vspace{1mm}
        $W=\tau(\theta_2-\theta_1)=\tau \Delta \theta$\\
        \vspace{1mm}
        $P=\tau\omega$\\
        \vspace{1mm}
        $L=r\times p=m r \times v $ - AM particle\\
        \vspace{1mm}
        $L=I\omega$ -  AM rigid body\\
        \vspace{1mm}
        $\sum \tau=\frac{dL}{dt}$
        \vspace{1mm}
        \section{Rotational motion}
        $\omega=\frac{d\theta}{dt}$\\
        \vspace{1mm}
        $\alpha=\frac{d\omega}{dt}=\frac{d^2\theta}{dt^2}$\\
        \vspace{1mm}
        Equations for constant $\alpha$:
        $\theta=\theta_o+\omega_ot=\frac{1}{2}\alpha t^2$\\
        \vspace{1mm}
        $\omega=\omega_o+\alpha t$\\
        \vspace{1mm}
        $\omega^2=\omega_o^2+2\alpha(\theta-\theta_o)$\\
        \vspace{1mm}
        $E_k=\frac{1}{2}I\omega^2$\\
        \vspace{1mm}
        $I=\int r^2 dm$
        \vspace{1mm}
        \section{SHM}
        $\omega=2\pi f=\frac{2\pi}{T}$\\
        \vspace{1mm}
        $F=-kx$\\
        \vspace{1mm}
        $E_s=\frac{1}{2}kx^2$\\
        \vspace{1mm}
        $E=\frac{1}{2}mv^2+\frac{1}{2}kx^2=const$\\
        \vspace{1mm}
        $T_s=2\pi \sqrt{\frac{m}{k}}$\\
        \vspace{1mm}
        $T_{sp}=2\pi \sqrt{\frac{L}{g}}$\\
        \vspace{1mm}
        $T_{physP}=2\pi \sqrt{\frac{I}{mgd}}$


        \section{Waves}
        $v=f\lambda$\\
        \vspace{1mm}
        $k=\frac{2\pi}{\lambda}$\\
        \vspace{1mm}
        $\omega=2\pi f$\\
        \vspace{1mm}
        General Wavefunction for free wave:\\
        $y(x,t)=Asin(\omega t-kx)$\\
        \vspace{1mm}
        Wave Equation:\\
        $\frac{\partial^2y}{\partial x^2}=\frac{1}{v^2}\frac{\partial^2y}{\partial t^2}$\\
        \vspace{1mm}
        $E=hf=\hbar\omega=\frac{hc}{\lambda}$\\
        \vspace{1mm}
        $eV_o=hf-\phi$ - photoelectric effect\\
        \vspace{1mm}
        $f_L=\frac{v\pm v_L}{v \pm v_s}f_s$\\
        \vspace{1mm}
        $c=1/\sqrt{\mu_o \varepsilon_o}$\\
        \vspace{1mm}
        $n=c/v$\\
        \vspace{1mm}
        $n_asin(\theta_a)=n_bsin(\theta_b)$\\
        \vspace{1mm}
        $sin(\theta_c)=\frac{n_b}{n_a}$\\
        \vspace{1mm}
        $dsin(\theta)=m\lambda$ - constructive\\
        \vspace{1mm}
        $dsin(\theta)=(m+\frac{1}{2})\lambda$ - destructive\\
        \vspace{1mm}
        $\frac{1}{u}+\frac{1}{v}=\frac{1}{f}$ - object,image distance\\
        \vspace{1mm}










    \section{Elasticity}
    \newlength{\MyLen}
    \settowidth{\MyLen}{\texttt{letterpaper}/\texttt{a4paper} \ }
    $ Stess=F/A$\\
    \vspace{1mm}
    $Strain=\delta l / l_o$\\
    \vspace{1mm}
    \textit{Youngs Mod}$=Stess/Strain$\\


    \section{Thermodynamics}
    \settowidth{\MyLen}{\texttt{multicol} }
    $pV=nRT$\\
    \vspace{1mm}
    $moles=m/A$\\
    \vspace{1mm}
    Kinetic energy per molecule\\
    $E_k=n/2k_bT$- n=Degrees of freedom\\
    \vspace{1mm}
    $v_{rms}=\sqrt{3k_bT/m}=\sqrt{3RT/A}$\\
    \vspace{1mm}
    $\gamma=C_p/C_v$\\
    \vspace{1mm}
    $\gamma=5/3$ - Monatomic\\
    \vspace{1mm}
    $\gamma=7/5$ - Diatomic \\
    \vspace{1mm}
    $v=\sqrt{\frac{\gamma P}{\rho}}$\\
    \vspace{1mm}

    \section{Entropy-Heat}
    $dS=\frac{dQ}{T}$\\
    \vspace{1mm}
    $Q=mc\Delta T$\\
    \vspace{1mm}
    $Q=mL$\\
    \vspace{1mm}
    $dQ=L dm$ - if $m$ changes\\
    \vspace{1mm}
    Consider what changes, 
    i.e sign on \textit{Q}.
    Also for a large bath,
    $\Delta S=\frac{\Delta Q}{T}$\\
    \vspace{1mm}
    $\frac{dQ}{dt}=k \frac{\Delta T}{ x}$\\


    \section{Relativity}
    $\beta=v/c$\\
    \vspace{1mm}
    $\gamma=1/\sqrt{1-\beta^2}$\\
    \vspace{1mm}
    $p=\gamma mv$\\
    \vspace{1mm}
    $E=\gamma mc^2$\\
    \vspace{1mm}
    $E^2=(pc)^2+(mc^2)^2$\\
    \vspace{1mm}
    $\Delta t=\gamma \Delta t_o$\\
    \vspace{1mm}
    $\Delta L= \frac{\Delta L_o}{\gamma}$\\
    \vspace{1mm}
    $E_k=(1-\gamma)mc^2$

    \section{Electromagnetism}
    $F=\frac{Q_1 Q_2}{4\pi \varepsilon_o r^2} $\\
    \vspace{1mm}
    $E=\frac{Q}{4\pi \varepsilon_o r^2}\hat{r}$\\
    \vspace{1mm}
    $p=q\cdot l$ - Dipole moment\\
    \vspace{1mm}
    $\tau=p \times E$ - Torque\\
    \vspace{1mm}
    $u=-p\cdot E $ - Potential Energy\\
    \vspace{1mm}
    $E=-\nabla V$\\
    \vspace{1mm}
    $V=-\int E \cdot dl $\\
    \vspace{1mm}
    $\int E \cdot dA=\frac{Q_{encl}}{\varepsilon_o}=\frac{\sum_i q_i}{\varepsilon_o}$\\
    \vspace{1mm}
    $C=Q/V$\\
    \vspace{1mm}
    $C=\varepsilon_o \frac{A}{d} $ - parallel plate\\
    \vspace{1mm}
    $\frac{1}{C}=\frac{1}{C_1}+\frac{1}{C_2}+..+\frac{1}{C_n}$ - Series\\
    \vspace{1mm}
    $C=C_1+C_2+..+C_n$ - parallel\\
    \vspace{1mm}
    $U=\frac{Q^2}{2C}=\frac{1}{2}CV^2=\frac{1}{2}QV$ - stored E\\
    \vspace{1mm}
    $u_e=\frac{1}{2}\varepsilon_o \varepsilon_r E^2$ - $E_E$ density\\
    \vspace{1mm}
    $u_b=\frac{1}{2}\frac{B^2}{\mu_o \mu_r}$ - $E_B$ density\\
    \vspace{1mm}
    $J=\sum_i n_iq_iv_{d_i}$\\
    \vspace{1mm}
    $\rho=\frac{E}{J}$ - resistivity\\
    \vspace{1mm}
    $\sigma=\frac{1}{\rho}$ - conductivity\\
    \vspace{1mm}
    $R=\frac{\rho L}{A}$\\
    \vspace{1mm}
    $V=\varepsilon-Ir$ - across a Battery\\
    \vspace{1mm}
    $P=VI=I^2R=\frac{V^2}{R}$\\
    \vspace{1mm}
    $I=\frac{dQ}{dt}=nqAv_d$\\
    \vspace{1mm}
    $R=R_1+R_2+..+R_n$ - series\\
    \vspace{1mm}
    $\frac{1}{R}=\frac{1}{R_1}+\frac{1}{R_2}+..+\frac{1}{R_n}$ - parallel\\
    \vspace{1mm}
    $F=qE$\\
    \vspace{1mm}
    $F=q \ v\times B$\\
    \vspace{1mm}
    $F=Il\times B$ \\
    \vspace{1mm}
    $B=\frac{\mu_o I}{2\pi r}$ - current carrying wire\\
    \vspace{1mm}
    $B=\frac{\mu_o I}{2r}$ - center of a loop\\
    \vspace{1mm}
    Multiply by N for N loops.
    \vspace{1mm}
    $B=\frac{\mu_o I}{2(x^2+r^2)^{3/2}}$ - $x$ from center of loop\\
    \vspace{1mm}
    $\mu_e=\frac{e\hbar}{2m_e}$ \\
    \vspace{1mm}
    $\mu_N=\frac{e\hbar}{2m_N}$\\
    \vspace{1mm}
    $\varepsilon=-\frac{d\Phi_b}{dt}=-\frac{B\cdot dA}{dt}$\\
    \vspace{1mm}
    $E_b=-\mu_{N / e} \cdot B$\\
    \vspace{1mm}
    $\int B \cdot dl=\mu_o I_{encl}$\\
    \vspace{1mm}
    \section{Capacitors}
    Charging:\\
    $Q=Q_o(1-e^{-t/RC})$\\
    \vspace{1mm}
    $I=I_o e^{-t/RC}$\\
    \vspace{1mm}
    Discharging:\\
    $Q=Q_oe^{-t/RC}$\\
    \vspace{1mm}
    $I=I e^{-t/RC}$\\
    \vspace{1mm}
    Where $RC=\tau$ is the time constant\\
    \vspace{1mm}

    \section{Gravity}
    $F=G\frac{Mm}{r^2}$\\
    \vspace{1mm}
    $g=G\frac{M}{r^2}$\\
    \vspace{1mm}

    \section{Quantum mechanics}
    $\left(-\frac{\hbar}{2m}\nabla+V\right)\psi=E\psi $\\
    \vspace{1mm}    
    $\Delta p \Delta x \geq \frac{\hbar}{2}$\\
    \vspace{1mm}
    $f(E)=\frac{1}{e^{(E-E_f)/k_bT}+1}$\\
    \vspace{1mm}
    $\lambda_db=\frac{h}{p}$\\
    \vspace{1mm}

















\end{multicols}
\end{document}

答案1

我认为您指的是分栏符,而不是?这可以(应该?)通过将内容移至下一列来General Wavefunction实现。\columnbreak

我认为应该\columnbreak\section{Electromagnetism}和处添加一个\section{Gravity}。我更正了一些拼写错误,但可能还有其他我目前找不到的...

对于其他一些问题,我不会用这个答案来讨论。

\documentclass[12pt,landscape]{article}
\usepackage{multicol}
\usepackage{calc}
\usepackage{ifthen}
\usepackage[portrait]{geometry}
\usepackage{hyperref}
\usepackage{amsmath}


% To Do:
% \listoffigures \listoftables
% \setcounter{secnumdepth}{0}


% This sets page margins to .5 inch if using letter paper, and to 1cm
% if using A4 paper. (This probably isn't strictly necessary.)
% If using another size paper, use default 1cm margins.
\ifthenelse{\lengthtest { \paperwidth = 11in}}
{ \geometry{top=.5in,left=.5in,right=.5in,bottom=.5in} }
{\ifthenelse{ \lengthtest{ \paperwidth = 297mm}}
{\geometry{top=1cm,left=1cm,right=1cm,bottom=1cm} }
{\geometry{top=1cm,left=1cm,right=1cm,bottom=1cm} }
} 

% Turn off header and footer
\pagestyle{empty}


% Redefine section commands to use less space
\makeatletter
\renewcommand{\section}{\@startsection{section}{1}{0mm}%
{-1ex plus -.5ex minus -.2ex}%
{0.5ex plus .2ex}%x
{\normalfont\large\bfseries}}
\renewcommand{\subsection}{\@startsection{subsection}{2}{0mm}%
{-1explus -.5ex minus -.2ex}%
{0.5ex plus .2ex}%
{\normalfont\normalsize\bfseries}}
\renewcommand{\subsubsection}{\@startsection{subsubsection}{3}{0mm}%
{-1ex plus -.5ex minus -.2ex}%
{1ex plus .2ex}%
{\normalfont\small\bfseries}}
\makeatother

% Define BibTeX command
\def\BibTeX{{\rm B\kern-.05em{\sc i\kern-.025em b}\kern-.08em
    T\kern-.1667em\lower.7ex\hbox{E}\kern-.125emX}}

% Don't print section numbers
\setcounter{secnumdepth}{0}


\setlength{\parindent}{0pt}
\setlength{\parskip}{0pt plus 0.5ex}


% -----------------------------------------------------------------------

\begin{document}

\raggedright
\footnotesize
\begin{multicols}{3}


% multicol parameters
% These lengths are set only within the two main columns
%\setlength{\columnseprule}{0.25pt}
\setlength{\premulticols}{1pt}
\setlength{\postmulticols}{1pt}
\setlength{\multicolsep}{1pt}
\setlength{\columnsep}{2pt}



\section{Mechanics}


    $v=u+at$    \\
    \vspace{1mm}
    $s=\frac{v+u}{2}t$. \\
    \vspace{1mm}
    \vspace{1mm}
    $v^2=u^2+2as$      \\
    \vspace{1mm}
    $s=ut+\frac{1}{2}at^2$  \\
    \vspace{1mm}
    $p=mv$    \\
    \vspace{1mm} 
    $\sum F= \frac{dp}{dt}$  \\
    \vspace{1mm}
    $\int_{t_1}^{t_2}Fdt=p_2-p_1$ - Impulse \\
    \vspace{1mm}
    $P=\frac{F}{A}$ \\
    \vspace{1mm}
    $F=ma$\\
    \vspace{1mm}
    $E_k=1/2mv^2$ \\
    \vspace{1mm}
    $\mu=Fd_\perp$ - moment \\
    \vspace{1mm}
    $E_p=mgh$\\
    \vspace{1mm}
    $W=\int F \cdot dx=F\Delta x$\\
    \vspace{1mm}
    $P_{avg}=\frac{\Delta W}{\Delta t}$\\
    \vspace{1mm}
    $P_{inst}=\frac{dW}{dT}=F\cdot v$\\
    \vspace{1mm}
    \section{Torque}
    $\tau=Fd_{\perp}$ - About midpoint\\
    \vspace{1mm}
    $\tau=r \times F$ - vector torque\\
    \vspace{1mm}
    $W=\tau(\theta_2-\theta_1)=\tau \Delta \theta$\\
    \vspace{1mm}
    $P=\tau\omega$\\
    \vspace{1mm}
    $L=r\times p=m r \times v $ - AM particle\\
    \vspace{1mm}
    $L=I\omega$ -  AM rigid body\\
    \vspace{1mm}
    $\sum \tau=\frac{dL}{dt}$
    \vspace{1mm}
    \section{Rotational motion}
    $\omega=\frac{d\theta}{dt}$\\
    \vspace{1mm}
    $\alpha=\frac{d\omega}{dt}=\frac{d^2\theta}{dt^2}$\\
    \vspace{1mm}
    Equations for constant $\alpha$:
    $\theta=\theta_o+\omega_ot=\frac{1}{2}\alpha t^2$\\
    \vspace{1mm}
    $\omega=\omega_o+\alpha t$\\
    \vspace{1mm}
    $\omega^2=\omega_o^2+2\alpha(\theta-\theta_o)$\\
    \vspace{1mm}
    $E_k=\frac{1}{2}I\omega^2$\\
    \vspace{1mm}
    $I=\int r^2 dm$
    \vspace{1mm}
    \section{SHM}
    $\omega=2\pi f=\frac{2\pi}{T}$\\
    \vspace{1mm}
    $F=-kx$\\
    \vspace{1mm}
    $E_s=\frac{1}{2}kx^2$\\
    \vspace{1mm}
    $E=\frac{1}{2}mv^2+\frac{1}{2}kx^2=const$\\
    \vspace{1mm}
    $T_s=2\pi \sqrt{\frac{m}{k}}$\\
    \vspace{1mm}
    $T_{sp}=2\pi \sqrt{\frac{L}{g}}$\\
    \vspace{1mm}
    $T_{physP}=2\pi \sqrt{\frac{I}{mgd}}$


    \section{Waves}
    $v=f\lambda$\\
    \vspace{1mm}
    $k=\frac{2\pi}{\lambda}$\\
    \vspace{1mm}
    $\omega=2\pi f$\\
    \vspace{1mm}
    \columnbreak
    General Wavefunction for free wave:\\
    $y(x,t)=Asin(\omega t-kx)$\\
    \vspace{1mm}
    Wave Equation:\\
    $\frac{\partial^2y}{\partial x^2}=\frac{1}{v^2}\frac{\partial^2y}{\partial t^2}$\\
    \vspace{1mm}
    $E=hf=\hbar\omega=\frac{hc}{\lambda}$\\
    \vspace{1mm}
    $eV_o=hf-\phi$ - photoelectric effect\\
    \vspace{1mm}
    $f_L=\frac{v\pm v_L}{v \pm v_s}f_s$\\
    \vspace{1mm}
    $c=1/\sqrt{\mu_o \varepsilon_o}$\\
    \vspace{1mm}
    $n=c/v$\\
    \vspace{1mm}
    $n_asin(\theta_a)=n_bsin(\theta_b)$\\
    \vspace{1mm}
    $sin(\theta_c)=\frac{n_b}{n_a}$\\
    \vspace{1mm}
    $dsin(\theta)=m\lambda$ - constructive\\
    \vspace{1mm}
    $dsin(\theta)=(m+\frac{1}{2})\lambda$ - destructive\\
    \vspace{1mm}
    $\frac{1}{u}+\frac{1}{v}=\frac{1}{f}$ - object,image distance\\
    \vspace{1mm}










\section{Elasticity}
\newlength{\MyLen}
\settowidth{\MyLen}{\texttt{letterpaper}/\texttt{a4paper} \ }
$ Stress=F/A$\\
\vspace{1mm}
$Strain=\delta l / l_o$\\
\vspace{1mm}
\textit{Youngs Mod}$=Stress/Strain$\\


\section{Thermodynamics}
\settowidth{\MyLen}{\texttt{multicol} }
$pV=nRT$\\
\vspace{1mm}
$moles=m/A$\\
\vspace{1mm}
Kinetic energy per molecule\\
$E_k=n/2k_bT$- n=Degrees of freedom\\
\vspace{1mm}
$v_{rms}=\sqrt{3k_bT/m}=\sqrt{3RT/A}$\\
\vspace{1mm}
$\gamma=C_p/C_v$\\
\vspace{1mm}
$\gamma=5/3$ - Monatomic\\
\vspace{1mm}
$\gamma=7/5$ - Diatomic \\
\vspace{1mm}
$v=\sqrt{\frac{\gamma P}{\rho}}$\\
\vspace{1mm}

\section{Entropy-Heat}
$dS=\frac{dQ}{T}$\\
\vspace{1mm}
$Q=mc\Delta T$\\
\vspace{1mm}
$Q=mL$\\
\vspace{1mm}
$dQ=L dm$ - if $m$ changes\\
\vspace{1mm}
Consider what changes, 
i.e sign on \textit{Q}.
Also for a large bath,
$\Delta S=\frac{\Delta Q}{T}$\\
\vspace{1mm}
$\frac{dQ}{dt}=k \frac{\Delta T}{ x}$\\


\section{Relativity}
$\beta=v/c$\\
\vspace{1mm}
$\gamma=1/\sqrt{1-\beta^2}$\\
\vspace{1mm}
$p=\gamma mv$\\
\vspace{1mm}
$E=\gamma mc^2$\\
\vspace{1mm}
$E^2=(pc)^2+(mc^2)^2$\\
\vspace{1mm}
$\Delta t=\gamma \Delta t_o$\\
\vspace{1mm}
$\Delta L= \frac{\Delta L_o}{\gamma}$\\
\vspace{1mm}
$E_k=(1-\gamma)mc^2$
\columnbreak
\section{Electromagnetism}
$F=\frac{Q_1 Q_2}{4\pi \varepsilon_o r^2} $\\
\vspace{1mm}
$E=\frac{Q}{4\pi \varepsilon_o r^2}\hat{r}$\\
\vspace{1mm}
$p=q\cdot l$ - Dipole moment\\
\vspace{1mm}
$\tau=p \times E$ - Torque\\
\vspace{1mm}
$u=-p\cdot E $ - Potential Energy\\
\vspace{1mm}
$E=-\nabla V$\\
\vspace{1mm}
$V=-\int E \cdot dl $\\
\vspace{1mm}
$\int E \cdot dA=\frac{Q_{encl}}{\varepsilon_o}=\frac{\sum_i q_i}{\varepsilon_o}$\\
\vspace{1mm}
$C=Q/V$\\
\vspace{1mm}
$C=\varepsilon_o \frac{A}{d} $ - parallel plate\\
\vspace{1mm}
$\frac{1}{C}=\frac{1}{C_1}+\frac{1}{C_2}+..+\frac{1}{C_n}$ - Series\\
\vspace{1mm}
$C=C_1+C_2+..+C_n$ - parallel\\
\vspace{1mm}
$U=\frac{Q^2}{2C}=\frac{1}{2}CV^2=\frac{1}{2}QV$ - stored E\\
\vspace{1mm}
$u_e=\frac{1}{2}\varepsilon_o \varepsilon_r E^2$ - $E_E$ density\\
\vspace{1mm}
$u_b=\frac{1}{2}\frac{B^2}{\mu_o \mu_r}$ - $E_B$ density\\
\vspace{1mm}
$J=\sum_i n_iq_iv_{d_i}$\\
\vspace{1mm}
$\rho=\frac{E}{J}$ - resistivity\\
\vspace{1mm}
$\sigma=\frac{1}{\rho}$ - conductivity\\
\vspace{1mm}
$R=\frac{\rho L}{A}$\\
\vspace{1mm}
$V=\varepsilon-Ir$ - across a Battery\\
\vspace{1mm}
$P=VI=I^2R=\frac{V^2}{R}$\\
\vspace{1mm}
$I=\frac{dQ}{dt}=nqAv_d$\\
\vspace{1mm}
$R=R_1+R_2+..+R_n$ - series\\
\vspace{1mm}
$\frac{1}{R}=\frac{1}{R_1}+\frac{1}{R_2}+..+\frac{1}{R_n}$ - parallel\\
\vspace{1mm}
$F=qE$\\
\vspace{1mm}
$F=q \ v\times B$\\
\vspace{1mm}
$F=Il\times B$ \\
\vspace{1mm}
$B=\frac{\mu_o I}{2\pi r}$ - current carrying wire\\
\vspace{1mm}
$B=\frac{\mu_o I}{2r}$ - center of a loop\\
\vspace{1mm}
Multiply by N for N loops.
\vspace{1mm}
$B=\frac{\mu_o I}{2(x^2+r^2)^{3/2}}$ - $x$ from center of loop\\
\vspace{1mm}
$\mu_e=\frac{e\hbar}{2m_e}$ \\
\vspace{1mm}
$\mu_N=\frac{e\hbar}{2m_N}$\\
\vspace{1mm}
$\varepsilon=-\frac{d\Phi_b}{dt}=-\frac{B\cdot dA}{dt}$\\
\vspace{1mm}
$E_b=-\mu_{N / e} \cdot B$\\
\vspace{1mm}
$\int B \cdot dl=\mu_o I_{encl}$\\
\vspace{1mm}
\section{Capacitors}
Charging:\\
$Q=Q_o(1-e^{-t/RC})$\\
\vspace{1mm}
$I=I_o e^{-t/RC}$\\
\vspace{1mm}
Discharging:\\
$Q=Q_oe^{-t/RC}$\\
\vspace{1mm}
$I=I e^{-t/RC}$\\
\vspace{1mm}
Where $RC=\tau$ is the time constant\\
\vspace{1mm}
\columnbreak
\section{Gravity}
$F=G\frac{Mm}{r^2}$\\
\vspace{1mm}
$g=G\frac{M}{r^2}$\\
\vspace{1mm}

\section{Quantum mechanics}
$\left(-\frac{\hbar}{2m}\nabla+V\right)\psi=E\psi $\\
\vspace{1mm}    
$\Delta p \Delta x \geq \frac{\hbar}{2}$\\
\vspace{1mm}
$f(E)=\frac{1}{e^{(E-E_f)/k_bT}+1}$\\
\vspace{1mm}
$\lambda_db=\frac{h}{p}$\\
\vspace{1mm}
\end{multicols}
\end{document}

在此处输入图片描述 在此处输入图片描述

相关内容