有人能帮我解决这个问题吗?我查过有类似问题的问题,但似乎没有一个对我有用。我正在写一本书,我喜欢使用wrapfig
站点注释来回忆或记笔记等。在整本书中,包裹图在其下方为页面的其余部分保留空间。\clearpage
解决了这个问题,但我不想在每页之后开始新的一页wrapfigure
。帮助 :(
以下是我正在处理的一个具体案例:
我希望图表下方的段落能够扩展到整个页面。上面的 MWE 如下所示。
\documentclass{article}
\usepackage{tikz}
\usepackage{amsmath}
\usepackage{wrapfig}
\usepackage{framed}
\usepackage{geometry}
\geometry{a4paper, portrait, margin=1in}
\begin{document}
\subsection*{What is Differentiation?}
Differentiation is a mathematical tool used to find the \textbf{gradient of a tangent} to any general curve $y=f(x)$ at any desired point ($P$).
\begin{center}
\begin{tikzpicture}[domain=0:4]
\draw (0,-0.3) node[left]{$O$};
\draw[thick, color=gray,->] (-4,0) -- (5,0) node[right] {\textcolor{black}{$x$}};
\draw[thick, color=gray, ->] (0,-1) -- (0,5) node[above] {\textcolor{black}{$f(x)$}};
\draw [color=red, semithick](-4,1).. controls(1,1.5).. (3.5,5);
\node[circle,fill=black,inner sep=0pt,minimum size=3pt,label=below right:{$P(x,y)$}] (P) at (1.15,2.15) {};
\draw (3,4) node[right]{$y=f(x)$};
\draw (-1,3/5+0.05)--(3,34/10+0.05);
\draw (-0.3,0.3) node[left]{tangent};
\end{tikzpicture}
\end{center}
In general, the steepness (i.e. gradient) of a curve at any point $P$ is the same as the gradient of the tangent at that point; i.e.
\[m_{\text{tangent at P}}=m_{f(x)\text{ at P}}\]
In calculus, $m_{f(x)\text{ at P}}$ is denoted \[\displaystyle\frac{d}{dx}\left(f(x)\right)\text{~~or~~~~} \displaystyle\frac{dy}{dx}\] when the equation is defined in the form $y=f(x)$, and we call this general gradient the \textbf{derivative} of the curve. \paragraph{}
\begin{wrapfigure}{r}{5.5cm}
\vspace{-1cm}
\begin{center}
\begin{minipage}{5cm}
\colorlet{shadecolor}{green!15}
\begin{shaded}
\normalsize \textbf{Notation}
\Large $$\delta x$$
\normalsize The Greek letter $\delta$ (small-case delta) is a \textbf{prefix} to a variable and it represents an infinitesimally small increase in that variable. It is not a distinct value.
\end{shaded}
\end{minipage}
\end{center}
\end{wrapfigure}
Consider now another point on our general curve, the point Q. This point is $\delta x$ away from $P$ horizontally and $\delta y$ away from $P$ vertically:\\
\begin{tikzpicture}[domain=0:4]
\draw (0,-0.3) node[left]{$O$};
\draw[thick, color=gray,->] (-4,0) -- (5,0) node[right] {\textcolor{black}{$x$}};
\draw[thick, color=gray, ->] (0,-1) -- (0,5) node[above] {\textcolor{black}{$f(x)$}};
\draw[color=blue] (1.15,2.15)--(3.3,4.7);
\draw [color=red, semithick](-4,1).. controls(1,1.5).. (3.5,5);
\node[circle,fill=black,inner sep=0pt,minimum size=3pt,label=below right:{$P(x,y)$}] (P) at (1.15,2.15) {};
\node[circle,fill=black,inner sep=0pt,minimum size=3pt,label=right:{$Q(x+\delta x,y+\delta y)$}] (Q) at (3.3,4.7) {};
\draw (3,4) node[right]{$y=f(x)$};
\draw (-1,3/5+0.05)--(3,34/10+0.05);
\draw (-0.3,0.3) node[left]{tangent};
\draw[dotted] (3.3,4.7)--(3.3,4.3);
\draw[dotted] (3.3,3.7)--(3.3,0);
\draw[dotted] (1.12,2.15)--(1.12,0);
\draw[dotted] (3.3,4.7)--(0,4.7);
\draw[dotted] (1.12,2.15)--(0,2.15);
\draw[<->,dashed](-0.3,2.15)--(-0.3,4.7);
\draw(-0.6, 3.4) node{$\delta y$};
\draw[<->,dashed](1.15,-0.3)--(3.3,-0.3);
\draw(2.3, -0.6) node{$\delta x$};
\end{tikzpicture}\\
The coordinates of $Q$ are $(x+\delta x,y+\delta y)$, shown above. We notice that if the values of $\delta x$ and $\delta y$ were to get smaller and smaller, the gradient of the chord $PQ$ (in blue) would approach that of the tangent at $P$, the gradient we wish to find ($\frac{dy}{dx}$). We also know that the $y$-values of this graph are dependent on their respective $x$-value, since $y$ is defined as a function of $x$ ($y=f(x)$). So as $\delta x$ decreases, $\delta y$ will consequentially decrease because $(y+\delta y)$ is dependent on $(x+\delta x)$. So we can say that as $\boldsymbol{\delta x\longrightarrow 0}$; $\boldsymbol{m_{PQ}\longrightarrow\frac{dy}{dx}}$.
\end{document}
我很感谢您的反馈:)
答案1
您只需将要换行的行数作为环境的可选参数进行设置:
\begin{wrapfigure}[3]{r}{5.5cm}
…
\end{wrapfigure}
或者,您可以尝试InsertBoxR
在环境中使用通用宏wrapfigure
:使用
......
\input{insboxtex}
\begin{document}
......
\InsertBoxR{0}{%
\begin{minipage}{5cm}
\colorlet{shadecolor}{green!15}
\vskip\dimexpr-\FrameSep-0.6ex\relax
\begin{shaded}
\normalsize \textbf{Notation}
\Large $$\delta x$$
\normalsize The Greek letter $\delta$ (small-case delta) is a \textbf{prefix} to a variable and it represents an infinitesimally small increase in that variable. It is not a distinct value.
\end{shaded}
\end{minipage}}[-2]
答案2
你不需要wrapfig
这个。你也不需要并且framed
(amsbsy
你滥用了\boldsymbol
,\boldmath
如果你真的想让数学变得大胆)。
我还删除了不需要的\left
、\right
和。\displaystyle
wrapfig
不要使用非工作环境tabular
,因为您想要放置一些不允许在插入周围流动的东西。
\documentclass{article}
\usepackage{geometry}
\usepackage{tikz}
\usepackage{amsmath,bm,tabularx,framed}
\geometry{a4paper, portrait, margin=1in}
\newlength{\normalparindent}
\AtBeginDocument{\setlength{\normalparindent}{\parindent}}
\newcommand{\normalindent}{\hspace*{\normalparindent}}
\begin{document}
\subsection*{What is Differentiation?}
Differentiation is a mathematical tool used to find the \textbf{gradient of a tangent} to
any general curve $y=f(x)$ at any desired point ($P$).
\begin{center}
\begin{tikzpicture}[domain=0:4]
\draw (0,-0.3) node[left]{$O$};
\draw[thick, color=gray,->] (-4,0) -- (5,0) node[right] {\textcolor{black}{$x$}};
\draw[thick, color=gray, ->] (0,-1) -- (0,5) node[above] {\textcolor{black}{$f(x)$}};
\draw [color=red, semithick](-4,1).. controls(1,1.5).. (3.5,5);
\node[circle,fill=black,inner sep=0pt,minimum size=3pt,label=below right:{$P(x,y)$}] (P) at (1.15,2.15) {};
\draw (3,4) node[right]{$y=f(x)$};
\draw (-1,3/5+0.05)--(3,34/10+0.05);
\draw (-0.3,0.3) node[left]{tangent};
\end{tikzpicture}
\end{center}
In general, the steepness (i.e. gradient) of a curve at any point $P$ is the same as the
gradient of the tangent at that point; i.e.
\[
m_{\text{tangent at $P$}}=m_{f(x)\text{ at $P$}}
\]
In calculus, $m_{f(x)\text{ at $P$}}$ is denoted
\[
\frac{d}{dx}(f(x))\qquad\text{or}\qquad\frac{dy}{dx}
\]
when the equation is defined in the form $y=f(x)$, and we call this general gradient the
\textbf{derivative} of the curve.\strut
\noindent\begin{tabular}{
@{}
p{\dimexpr\textwidth-2\tabcolsep-5cm-12pt}
c
@{}
}
\normalindent Consider now another point on our general curve, the point Q. This point
is $\delta x$ away from $P$ horizontally and $\delta y$ away from $P$ vertically:
\begin{center}
\begin{tikzpicture}[domain=0:4,scale=.95]
\draw (0,-0.3) node[left]{$O$};
\draw[thick, color=gray,->] (-4,0) -- (5,0) node[right] {\textcolor{black}{$x$}};
\draw[thick, color=gray, ->] (0,-1) -- (0,5) node[above] {\textcolor{black}{$f(x)$}};
\draw[color=blue] (1.15,2.15)--(3.3,4.7);
\draw [color=red, semithick](-4,1).. controls(1,1.5).. (3.5,5);
\node[circle,fill=black,inner sep=0pt,minimum size=3pt,label=below right:{$P(x,y)$}] (P) at (1.15,2.15) {};
\node[circle,fill=black,inner sep=0pt,minimum size=3pt,label=right:{$Q(x+\delta x,y+\delta y)$}] (Q) at (3.3,4.7) {};
\draw (3,4) node[right]{$y=f(x)$};
\draw (-1,3/5+0.05)--(3,34/10+0.05);
\draw (-0.3,0.3) node[left]{tangent};
\draw[dotted] (3.3,4.7)--(3.3,4.3);
\draw[dotted] (3.3,3.7)--(3.3,0);
\draw[dotted] (1.12,2.15)--(1.12,0);
\draw[dotted] (3.3,4.7)--(0,4.7);
\draw[dotted] (1.12,2.15)--(0,2.15);
\draw[<->,dashed](-0.3,2.15)--(-0.3,4.7);
\draw(-0.6, 3.4) node{$\delta y$};
\draw[<->,dashed](1.15,-0.3)--(3.3,-0.3);
\draw(2.3, -0.6) node{$\delta x$};
\end{tikzpicture}
\end{center} &
\setlength{\fboxsep}{6pt}%
\smash{\colorbox{green!15}{%
\begin{minipage}[t]{5cm}
\textbf{Notation}
\begin{center}
\Large $\delta x$
\end{center}
The Greek letter $\delta$ (small-case delta) is a \textbf{prefix} to a variable and it
represents an infinitesimally small increase in that variable. It is not a distinct value.
\end{minipage}}}
\end{tabular}
The coordinates of $Q$ are $(x+\delta x,y+\delta y)$, shown above. We notice that if the
values of $\delta x$ and $\delta y$ were to get smaller and smaller, the gradient of the
chord $PQ$ (in blue) would approach that of the tangent at $P$, the gradient we wish to find
($\frac{dy}{dx}$). We also know that the $y$-values of this graph are dependent on their
respective $x$-value, since $y$ is defined as a function of $x$ ($y=f(x)$). So as $\delta x$
decreases, $\delta y$ will consequentially decrease because $(y+\delta y)$ is dependent on
$(x+\delta x)$. So we can say that as {\boldmath$\delta x\longrightarrow 0$;
$m_{PQ}\longrightarrow\frac{dy}{dx}$}.
\end{document}
需要一些技巧才能让 LaTeX 在表格中缩进段落,但当\normalindent
您想在\parbox
或中缩进段落minipage
(其中正常缩进被抑制)的其他情况下也可以显着方便。
永远不要使用$$
;\Large$$\delta x$$
您所拥有的只是通过center
环境实现的。
我也对第二个进行了一点缩放tikzpicture
,否则它就不适合分配的空间。
您也可以不使用tabular
,而是使用一些低级技巧。插入内容被添加到开头,作为一个零宽度框,其中包含另一个与文本宽度一样宽的框,插入内容被放置在最右边距。
然后将运行的文本设置为负数,这会使缩进位于右侧。最后一行(包含图表)使用涉及和的\hangindent
巧妙技巧居中。我们通过在图表之后的文本开头发出来掩盖我们的踪迹。\leftskip
\rightskip
\noindent
\documentclass{article}
\usepackage{geometry}
\usepackage{tikz}
\usepackage{amsmath,bm,tabularx,framed}
\geometry{a4paper, portrait, margin=1in}
\begin{document}
\subsection*{What is Differentiation?}
Differentiation is a mathematical tool used to find the \textbf{gradient of a tangent} to
any general curve $y=f(x)$ at any desired point ($P$).
\begin{center}
\begin{tikzpicture}[domain=0:4]
\draw (0,-0.3) node[left]{$O$};
\draw[thick, color=gray,->] (-4,0) -- (5,0) node[right] {\textcolor{black}{$x$}};
\draw[thick, color=gray, ->] (0,-1) -- (0,5) node[above] {\textcolor{black}{$f(x)$}};
\draw [color=red, semithick](-4,1).. controls(1,1.5).. (3.5,5);
\node[circle,fill=black,inner sep=0pt,minimum size=3pt,label=below right:{$P(x,y)$}] (P) at (1.15,2.15) {};
\draw (3,4) node[right]{$y=f(x)$};
\draw (-1,3/5+0.05)--(3,34/10+0.05);
\draw (-0.3,0.3) node[left]{tangent};
\end{tikzpicture}
\end{center}
In general, the steepness (i.e. gradient) of a curve at any point $P$ is the same as the
gradient of the tangent at that point; i.e.
\[
m_{\text{tangent at $P$}}=m_{f(x)\text{ at $P$}}
\]
In calculus, $m_{f(x)\text{ at $P$}}$ is denoted
\[
\frac{d}{dx}(f(x))\qquad\text{or}\qquad\frac{dy}{dx}
\]
when the equation is defined in the form $y=f(x)$, and we call this general gradient the
\textbf{derivative} of the curve.
\noindent
\makebox[0pt][l]{%
\makebox[\textwidth][r]{%
\setlength{\fboxsep}{6pt}%
\smash{\colorbox{green!15}{%
\begin{minipage}[t]{5cm}
\textbf{Notation}
\begin{center}
\Large $\delta x$
\end{center}
The Greek letter $\delta$ (small-case delta) is a \textbf{prefix} to a variable and it
represents an infinitesimally small increase in that variable. It is not a distinct value.
\end{minipage}}}%
}%
}\indent
\hangindent=-\dimexpr5cm+12pt+6pt\relax\hangafter=0
\begingroup
\leftskip=0pt plus 0.5fil \rightskip=0pt plus -0.5fil
Consider now another point on our general curve, the point Q. This point
is $\delta x$ away from $P$ horizontally and $\delta y$ away from $P$ vertically:\\
\begin{tikzpicture}[domain=0:4,scale=.95]
\draw (0,-0.3) node[left]{$O$};
\draw[thick, color=gray,->] (-4,0) -- (5,0) node[right] {\textcolor{black}{$x$}};
\draw[thick, color=gray, ->] (0,-1) -- (0,5) node[above] {\textcolor{black}{$f(x)$}};
\draw[color=blue] (1.15,2.15)--(3.3,4.7);
\draw [color=red, semithick](-4,1).. controls(1,1.5).. (3.5,5);
\node[circle,fill=black,inner sep=0pt,minimum size=3pt,label=below right:{$P(x,y)$}] (P) at (1.15,2.15) {};
\node[circle,fill=black,inner sep=0pt,minimum size=3pt,label=right:{$Q(x+\delta x,y+\delta y)$}] (Q) at (3.3,4.7) {};
\draw (3,4) node[right]{$y=f(x)$};
\draw (-1,3/5+0.05)--(3,34/10+0.05);
\draw (-0.3,0.3) node[left]{tangent};
\draw[dotted] (3.3,4.7)--(3.3,4.3);
\draw[dotted] (3.3,3.7)--(3.3,0);
\draw[dotted] (1.12,2.15)--(1.12,0);
\draw[dotted] (3.3,4.7)--(0,4.7);
\draw[dotted] (1.12,2.15)--(0,2.15);
\draw[<->,dashed](-0.3,2.15)--(-0.3,4.7);
\draw(-0.6, 3.4) node{$\delta y$};
\draw[<->,dashed](1.15,-0.3)--(3.3,-0.3);
\draw(2.3, -0.6) node{$\delta x$};
\end{tikzpicture}
\par\endgroup
\noindent
The coordinates of $Q$ are $(x+\delta x,y+\delta y)$, shown above. We notice that if the
values of $\delta x$ and $\delta y$ were to get smaller and smaller, the gradient of the
chord $PQ$ (in blue) would approach that of the tangent at $P$, the gradient we wish to find
($\frac{dy}{dx}$). We also know that the $y$-values of this graph are dependent on their
respective $x$-value, since $y$ is defined as a function of $x$ ($y=f(x)$). So as $\delta x$
decreases, $\delta y$ will consequentially decrease because $(y+\delta y)$ is dependent on
$(x+\delta x)$. So we can say that as {\boldmath$\delta x\longrightarrow 0$;
$m_{PQ}\longrightarrow\frac{dy}{dx}$}.
\end{document}