Foreach 循环直接使用路径交叉点

Foreach 循环直接使用路径交叉点

这是 MWE,我想使两条路径相交,并用循环遍历所有交叉点,事先不知道有多少个交叉点,并且绝对希望我不必特别命名每个交叉点。我希望能够做这样的事情:

%\foreach \p in {\path[name intersections={of = AE and MN}];}
%       \filldraw [red] (\p) circle(3pt);

最好的方法是什么?

\documentclass{standalone}
\usepackage[svgnames]{xcolor}
\usepackage{tikz}
\usetikzlibrary{calc,intersections}

\begin{document}

\begin{tikzpicture}

\coordinate (ORG) at (0.00, 0.00);

% first path (zig zag blue)
\coordinate (A) at (1.00, 3.00);
\coordinate (B) at (3.00, -3.00);
\coordinate (C) at (5.00, 3.00);
\coordinate (D) at (7.00, -3.00);
\coordinate (E) at (9.00, 3.00);
\draw[blue, line width=1.50pt, name path = AE] (ORG) -- (A) -- (B) -- (C) -- (D) -- (E);

% second path (ForestGreen)
\coordinate (M) at (0.00, 2.00);
\coordinate (N) at (10.00, 2.00);
\coordinate (U) at (10.00, -2.00);
\coordinate (V) at (0.00, -2.00);
\draw[ForestGreen, line width=1.50pt, name path = MN] (M) -- (N) -- (U) -- (V);

% first path points
\filldraw [teal] (A) circle(3pt);
\filldraw [teal] (B) circle(3pt);
\filldraw [teal] (C) circle(3pt);
\filldraw [teal] (D) circle(3pt);
\filldraw [teal] (E) circle(3pt);

% intersections of the two paths
\path [name intersections={of = AE and MN}];
\coordinate (P)  at (intersection-1);
\coordinate (Q)  at (intersection-2);
\coordinate (R)  at (intersection-3);
\coordinate (S)  at (intersection-4);
\coordinate (T)  at (intersection-5);
\coordinate (W)  at (intersection-6);
\coordinate (X)  at (intersection-7);
\coordinate (Y)  at (intersection-8);
\coordinate (Z)  at (intersection-9);

% mark each intersection with a red dot
\foreach \p in {P,Q,R,S,T,W,X,Y,Z}
        \filldraw [red] (\p) circle(3pt);

%\foreach \p in {\path[name intersections={of = AE and MN}];}
%       \filldraw [red] (\p) circle(3pt);

\end{tikzpicture}

\end{document}

答案1

这个怎么样:

\draw[name path = AE] (ORG) -- (A) -- (B) -- (C) -- (D) -- (E);
\draw[name path = MN] (M) -- (N) -- (U) -- (V);

\fill [name intersections={of=AE and MN, name=i, total=\t}] [red] 
   \foreach \s in {1,...,\t} {
       (i-\s) circle (3pt) 
    };

相关内容