Paracol、tikzcd 和 needspace

Paracol、tikzcd 和 needspace

我想将 tikzcd 图表与文本并排放置,但正如我们在下面的示例中看到的那样,有时图表(或文本)会转到下一页。

抱歉,文件太大了。

先感谢您。

例子

\documentclass[a4paper,12pt,reqno,twoside]{book} 

\usepackage{amsmath}
\usepackage[latin1]{inputenc}
\usepackage[brazil]{babel}

\usepackage[adobe-utopia]{mathdesign}


\usepackage{helvet}
\renewcommand{\familydefault}{\sfdefault}

\usepackage{setspace}

\usepackage{amsthm}
\usepackage{paralist} 
\usepackage{needspace}
\usepackage{paracol}

\usepackage[pdftex]{graphicx}
\usepackage[dvips,a4paper,top=2.54cm,bottom=2.0cm,left=2.0cm,right=2.54cm]{geometry}

\onehalfspacing
\parskip8pt
\vfuzz3pt 
\hfuzz3pt

\usepackage{tikz-cd}
\tikzset{
  every picture/.prefix style={
    execute at begin picture=\shorthandoff{"}
  }
}

\renewenvironment{proof}{{\bfseries Demonstração}}{\qed}

\begin{document}

\begin{proof}
\begin{sloppypar}
\begin{paracol}{2}
\begin{inparaenum}[(1)]
\noindent
\item
\begin{tikzcd} 
                                    & \square \arrow[dl, swap, "\alpha_1"]  & \\
\bullet \arrow[rr, swap, "\alpha_2"]        &                                   & \bullet \arrow[ul, swap, "\alpha_3"] \arrow[d,"\alpha_4"] \\
\bullet \arrow[u, "\alpha_5"]           &                                   & \bullet \arrow[ll, "\alpha_6"]
\end{tikzcd}
\switchcolumn
\needspace{4\baselineskip}
As relações do tipo $2$ são: $r1=\alpha_1 \alpha_2 \alpha_4$ e $r2=\alpha_5 \alpha_2 \alpha_3$. Os ciclos elementares são: $C_1 = \alpha_2 \alpha_3 \alpha_1$ e $C_2 = \alpha_2 \alpha_4 \alpha_6 \alpha_5$. Analogamente ao anterior, temos a solução $47$.

\switchcolumn*

\noindent
\item
\begin{tikzcd} 
                                    && \bullet \arrow[dl, swap, "\alpha_1"] &&\\
\bullet \arrow[r, bend left, "\alpha_2"]    & \bullet \arrow[rr, swap, "\alpha_4"] \arrow[l, bend left, "\alpha_3"] && \bullet \arrow[ul, swap, "\alpha_5"] \arrow[d,"\alpha_6"] &  \\
                                    &\bullet \arrow[u, "\alpha_7"] && \bullet \arrow[ll, "\alpha_8"] \arrow[r, bend left, "\alpha_9"]& \bullet \arrow[l, bend left, "\alpha_{10}"]
\end{tikzcd}
\switchcolumn
\needspace{4\baselineskip}
As relações do tipo $2$ são: $r1=\alpha_1 \alpha_4 \alpha_6$, $r2=\alpha_7 \alpha_4 \alpha_5$, $r3=\alpha_2 \alpha_4$, $r4=\alpha_1 \alpha_3$, $r5=\alpha_7 \alpha_3$, $r6=\alpha_6 \alpha_9$ e $r7=\alpha_{10} \alpha_8$. Os ciclos elementares são: $C_1 = \alpha_1 \alpha_4 \alpha_5$, $C_2 = \alpha_4 \alpha_6 \alpha_8 \alpha_7$, $C_3=\alpha_2 \alpha_3$ e $C_4=\alpha_9 \alpha_{10}$. Logo, o programa mostra nenhuma solução.

\switchcolumn*

\noindent
\item
\begin{tikzcd} 
\bullet \arrow[dr, bend left, "\alpha_2"]       && \bullet \arrow[dl, swap, "\alpha_1"] &\\
                                        & \bullet \arrow[rr, swap, "\alpha_4"] \arrow[ul, bend left, "\alpha_3"] && \bullet \arrow[ul, swap, "\alpha_5"] \arrow[d,"\alpha_6"] \\
\bullet \arrow[r, bend left, "\alpha_{10}"] &\bullet  \arrow[l, bend left, "\alpha_9"] \arrow[u, swap, "\alpha_7"] && \bullet \arrow[ll, "\alpha_8"] 
\end{tikzcd}
\switchcolumn
\needspace{4\baselineskip}
As relações do tipo $2$ são: $r1=\alpha_1 \alpha_4 \alpha_6$, $r2=\alpha_7 \alpha_4 \alpha_5$, $r3=\alpha_2 \alpha_4$, $r4=\alpha_1 \alpha_3$, $r5=\alpha_7 \alpha_3$, $r6=\alpha_8 \alpha_9$ e $r7=\alpha_{10} \alpha_7$. Os ciclos elementares são: $C_1 = \alpha_1 \alpha_4 \alpha_5$, $C_2 = \alpha_4 \alpha_6 \alpha_8 \alpha_7$, $C_3=\alpha_2 \alpha_3$ e $C_4=\alpha_9 \alpha_{10}$. Não obtemos nenhuma álgebra de incidência não hereditária.

\switchcolumn*

\noindent
\item
\begin{tikzcd} 
\bullet \arrow[dr, bend left, "\alpha_2"]   && \bullet \arrow[dl, swap, "\alpha_1"] && \bullet \arrow[dl, bend left, "\alpha_{10}"]\\
& \bullet \arrow[rr, swap, "\alpha_4"] \arrow[ul, bend left, "\alpha_3"] && \bullet \arrow[ul, swap, "\alpha_5"] \arrow[d,"\alpha_6"]  \arrow[ur, bend left, "\alpha_9"] &\\
                                    &\bullet   \arrow[u, swap, "\alpha_7"] && \bullet \arrow[ll, "\alpha_8"] &
\end{tikzcd}
\switchcolumn
\needspace{4\baselineskip}
As relações do tipo $2$ são: $r1=\alpha_1 \alpha_4 \alpha_6$, $r2=\alpha_7 \alpha_4 \alpha_5$, $r3=\alpha_2 \alpha_4$, $r4=\alpha_1 \alpha_3$, $r5=\alpha_7 \alpha_3$, $r6=\alpha_4 \alpha_9$, $r7=\alpha_{10} \alpha_5$ e $r8=\alpha_{6} \alpha_7$. Os ciclos elementares são: $C_1 = \alpha_1 \alpha_4 \alpha_5$, $C_2 = \alpha_4 \alpha_6 \alpha_8 \alpha_7$, $C_3=\alpha_2 \alpha_3$ e $C_4=\alpha_9 \alpha_{10}$. Logo, o programa mostra a álgebra $48$.

\switchcolumn*

\noindent
\item
\begin{tikzcd}
                                    & \bullet \arrow[d, bend left, "\alpha_2"] &&\\
                                    & \bullet \arrow[dl, swap, "\alpha_1"]  \arrow[u, bend left, "\alpha_3"] && \\
\bullet \arrow[rr, swap, "\alpha_4"]    && \bullet \arrow[ul, swap, "\alpha_5"] \arrow[d,"\alpha_6"] &\\
\bullet   \arrow[u, "\alpha_7"]             && \bullet \arrow[ll, "\alpha_8"] \arrow[r, bend left, "\alpha_9"] & \bullet \arrow[l, bend left, "\alpha_{10}"]
\end{tikzcd}
\switchcolumn
\needspace{4\baselineskip}
As relações do tipo $2$ são: $r1=\alpha_1 \alpha_4 \alpha_6$, $r2=\alpha_7 \alpha_4 \alpha_5$, $r3=\alpha_5 \alpha_3$, $r4=\alpha_2 \alpha_1$, $r5=\alpha_{10} \alpha_8$ e $r6=\alpha_6 \alpha_9$. Os ciclos elementares são: $C_1 = \alpha_1 \alpha_4 \alpha_5$, $C_2 = \alpha_4 \alpha_6 \alpha_8 \alpha_7$, $C_3=\alpha_2 \alpha_3$ e $C_4=\alpha_9 \alpha_{10}$. Portanto não tem nenhuma álgebra de incidência não hereditária.

\switchcolumn*

\noindent
\item
\begin{tikzcd}
                                & \bullet \arrow[d, bend left, "\alpha_1"]                          & \\
                                & \bullet \arrow[dl, swap, "\alpha_3"] \arrow[u, bend left, "\alpha_2"] & \\
\bullet \arrow[rr, swap, "\alpha_4"]    &                                                               & \bullet \arrow[ul, swap, "\alpha_5"] \arrow[d, "\alpha_6"]    \\
\bullet \arrow[u, "\alpha_7"]       &                                                               & \bullet \arrow[dl, "\alpha_8"] \\
                                & \bullet \arrow[ul, "\alpha_9"]                                    &
\end{tikzcd}
\switchcolumn
\needspace{4\baselineskip}
As relações do tipo $2$ são: $r1=\alpha_3 \alpha_4 \alpha_6$, $r2=\alpha_7 \alpha_4 \alpha_5$, $r3=\alpha_5 \alpha_2$ e $r4=\alpha_1 \alpha_3$. Os ciclos elementares são: $C_1 = \alpha_3 \alpha_4 \alpha_5$, $C_2 = \alpha_4 \alpha_6 \alpha_8 \alpha_9 \alpha_7$ e $C_3=\alpha_1 \alpha_2$. Portanto, não temos nenhuma solução.


\end{inparaenum}

\end{paracol}
\end{sloppypar}
\end{proof}

\end{document}

答案1

抱歉,找不到,brazil但这babel似乎对我有用。

在此处输入图片描述

\documentclass[a4paper,12pt,reqno,twoside]{book} 

\usepackage{amsmath,paralist}
\usepackage[latin1]{inputenc}
\usepackage[brazil]{babel}

\usepackage[adobe-utopia]{mathdesign}


\usepackage{helvet}
\renewcommand{\familydefault}{\sfdefault}

\usepackage{setspace}

\usepackage{amsthm}
\usepackage{paralist} 
\usepackage{needspace}
\usepackage{paracol}

\usepackage[pdftex]{graphicx}
\usepackage[dvips,a4paper,top=2.54cm,bottom=2.0cm,left=2.0cm,right=2.54cm]{geometry}

\onehalfspacing
\parskip8pt
\vfuzz3pt 
\hfuzz3pt

\usepackage{tikz-cd}
\tikzset{
  every picture/.prefix style={
    execute at begin picture=\shorthandoff{"}
  }
}

\renewenvironment{proof}{{\bfseries Demonstração}}{\qed}

\begin{document}

\begin{proof}
\begin{sloppypar}

\begin{compactenum}[(1)]
\item \begin{tikzcd} 
                                    & \square \arrow[dl, swap, "\alpha_1"]  & \\
\bullet \arrow[rr, swap, "\alpha_2"]        &                                   & \bullet \arrow[ul, swap, "\alpha_3"] \arrow[d,"\alpha_4"] \\
\bullet \arrow[u, "\alpha_5"]           &                                   & \bullet \arrow[ll, "\alpha_6"]
\end{tikzcd}\hfill%
\begin{minipage}{.55\linewidth}
\needspace{4\baselineskip}
\noindent As relações do tipo $2$ são: $r1=\alpha_1 \alpha_2 \alpha_4$ e $r2=\alpha_5 \alpha_2 \alpha_3$. Os ciclos elementares são: $C_1 = \alpha_2 \alpha_3 \alpha_1$ e $C_2 = \alpha_2 \alpha_4 \alpha_6 \alpha_5$. Analogamente ao anterior, temos a solução $47$.
\end{minipage}

\item\begin{tikzcd} 
                                    && \bullet \arrow[dl, swap, "\alpha_1"] &&\\
\bullet \arrow[r, bend left, "\alpha_2"]    & \bullet \arrow[rr, swap, "\alpha_4"] \arrow[l, bend left, "\alpha_3"] && \bullet \arrow[ul, swap, "\alpha_5"] \arrow[d,"\alpha_6"] &  \\
                                    &\bullet \arrow[u, "\alpha_7"] && \bullet \arrow[ll, "\alpha_8"] \arrow[r, bend left, "\alpha_9"]& \bullet \arrow[l, bend left, "\alpha_{10}"]
\end{tikzcd}\hfill%
\begin{minipage}{.55\linewidth}
As relações do tipo $2$ são: $r1=\alpha_1 \alpha_4 \alpha_6$, $r2=\alpha_7 \alpha_4 \alpha_5$, $r3=\alpha_2 \alpha_4$, $r4=\alpha_1 \alpha_3$, $r5=\alpha_7 \alpha_3$, $r6=\alpha_6 \alpha_9$ e $r7=\alpha_{10} \alpha_8$. Os ciclos elementares são: $C_1 = \alpha_1 \alpha_4 \alpha_5$, $C_2 = \alpha_4 \alpha_6 \alpha_8 \alpha_7$, $C_3=\alpha_2 \alpha_3$ e $C_4=\alpha_9 \alpha_{10}$. Logo, o programa mostra nenhuma solução.
\end{minipage}


\item\begin{tikzcd} 
\bullet \arrow[dr, bend left, "\alpha_2"]       && \bullet \arrow[dl, swap, "\alpha_1"] &\\
                                        & \bullet \arrow[rr, swap, "\alpha_4"] \arrow[ul, bend left, "\alpha_3"] && \bullet \arrow[ul, swap, "\alpha_5"] \arrow[d,"\alpha_6"] \\
\bullet \arrow[r, bend left, "\alpha_{10}"] &\bullet  \arrow[l, bend left, "\alpha_9"] \arrow[u, swap, "\alpha_7"] && \bullet \arrow[ll, "\alpha_8"] 
\end{tikzcd}\hfill%
\begin{minipage}{.55\linewidth}
As relações do tipo $2$ são: $r1=\alpha_1 \alpha_4 \alpha_6$, $r2=\alpha_7 \alpha_4 \alpha_5$, $r3=\alpha_2 \alpha_4$, $r4=\alpha_1 \alpha_3$, $r5=\alpha_7 \alpha_3$, $r6=\alpha_8 \alpha_9$ e $r7=\alpha_{10} \alpha_7$. Os ciclos elementares são: $C_1 = \alpha_1 \alpha_4 \alpha_5$, $C_2 = \alpha_4 \alpha_6 \alpha_8 \alpha_7$, $C_3=\alpha_2 \alpha_3$ e $C_4=\alpha_9 \alpha_{10}$. Não obtemos nenhuma álgebra de incidência não hereditária.
\end{minipage}


\item\begin{tikzcd} 
\bullet \arrow[dr, bend left, "\alpha_2"]   && \bullet \arrow[dl, swap, "\alpha_1"] && \bullet \arrow[dl, bend left, "\alpha_{10}"]\\
& \bullet \arrow[rr, swap, "\alpha_4"] \arrow[ul, bend left, "\alpha_3"] && \bullet \arrow[ul, swap, "\alpha_5"] \arrow[d,"\alpha_6"]  \arrow[ur, bend left, "\alpha_9"] &\\
                                    &\bullet   \arrow[u, swap, "\alpha_7"] && \bullet \arrow[ll, "\alpha_8"] &
\end{tikzcd}\hfill%
\begin{minipage}{.55\linewidth}
As relações do tipo $2$ são: $r1=\alpha_1 \alpha_4 \alpha_6$, $r2=\alpha_7 \alpha_4 \alpha_5$, $r3=\alpha_2 \alpha_4$, $r4=\alpha_1 \alpha_3$, $r5=\alpha_7 \alpha_3$, $r6=\alpha_4 \alpha_9$, $r7=\alpha_{10} \alpha_5$ e $r8=\alpha_{6} \alpha_7$. Os ciclos elementares são: $C_1 = \alpha_1 \alpha_4 \alpha_5$, $C_2 = \alpha_4 \alpha_6 \alpha_8 \alpha_7$, $C_3=\alpha_2 \alpha_3$ e $C_4=\alpha_9 \alpha_{10}$. Logo, o programa mostra a álgebra $48$.
\end{minipage}


\item\begin{tikzcd}
                                    & \bullet \arrow[d, bend left, "\alpha_2"] &&\\
                                    & \bullet \arrow[dl, swap, "\alpha_1"]  \arrow[u, bend left, "\alpha_3"] && \\
\bullet \arrow[rr, swap, "\alpha_4"]    && \bullet \arrow[ul, swap, "\alpha_5"] \arrow[d,"\alpha_6"] &\\
\bullet   \arrow[u, "\alpha_7"]             && \bullet \arrow[ll, "\alpha_8"] \arrow[r, bend left, "\alpha_9"] & \bullet \arrow[l, bend left, "\alpha_{10}"]
\end{tikzcd}\hfill%
\begin{minipage}{.55\linewidth}
As relações do tipo $2$ são: $r1=\alpha_1 \alpha_4 \alpha_6$, $r2=\alpha_7 \alpha_4 \alpha_5$, $r3=\alpha_5 \alpha_3$, $r4=\alpha_2 \alpha_1$, $r5=\alpha_{10} \alpha_8$ e $r6=\alpha_6 \alpha_9$. Os ciclos elementares são: $C_1 = \alpha_1 \alpha_4 \alpha_5$, $C_2 = \alpha_4 \alpha_6 \alpha_8 \alpha_7$, $C_3=\alpha_2 \alpha_3$ e $C_4=\alpha_9 \alpha_{10}$. Portanto não tem nenhuma álgebra de incidência não hereditária.
\end{minipage}




\item \begin{tikzcd}
                                & \bullet \arrow[d, bend left, "\alpha_1"]                          & \\
                                & \bullet \arrow[dl, swap, "\alpha_3"] \arrow[u, bend left, "\alpha_2"] & \\
\bullet \arrow[rr, swap, "\alpha_4"]    &                                                               & \bullet \arrow[ul, swap, "\alpha_5"] \arrow[d, "\alpha_6"]    \\
\bullet \arrow[u, "\alpha_7"]       &                                                               & \bullet \arrow[dl, "\alpha_8"] \\
                                & \bullet \arrow[ul, "\alpha_9"]                                    &
\end{tikzcd}\hfill%
\begin{minipage}{.55\linewidth}
As relações do tipo $2$ são: $r1=\alpha_3 \alpha_4 \alpha_6$, $r2=\alpha_7 \alpha_4 \alpha_5$, $r3=\alpha_5 \alpha_2$ e $r4=\alpha_1 \alpha_3$. Os ciclos elementares são: $C_1 = \alpha_3 \alpha_4 \alpha_5$, $C_2 = \alpha_4 \alpha_6 \alpha_8 \alpha_9 \alpha_7$ e $C_3=\alpha_1 \alpha_2$. Portanto, não temos nenhuma solução.
\end{minipage}

\end{compactenum}
\end{sloppypar}
\end{proof}

\end{document}

相关内容