我想在 word 中创建类似这样的内容MathType 6.9
但是我已经MikTex 2.9
在texmaker
电脑上安装了。为了测试代码并查看其中存在什么问题,我在 LaTeX 中创建了以下文档。
\documentclass[a4paper]{book}
\usepackage{amsmath}
\begin{document}
\begin{align}
T_4 &= \langle \underline{k}\,.\,\underline{k}^{*^T} \rangle=
\left\langle
\begin{bmatrix}
\left|k_1\right|^2 & k_1k_2^* & k_1k_3^* & k_1k_4^*\\
k_2k_1^* & \left|k_2\right|^2 & k_2k_3^* & k_2k_4^*\\
k_3k_1^* & k_3k_2^* & \left|k_3\right|^2 & k_3k_4^*\\
k_4k_1^* & k_4k_2^* & k_4k_3^* & \left|k_4\right|^2
\end{bmatrix}
\right\rangle
\\
&=\frac{1}{2}
\begin{split}
\left[\begin{matrix}
\langle|S_{XX}+S_{YY}|^2\rangle &
\langle(S_{XX}+S_{YY})(S_{XX}-S_{YY})^*\rangle &\\
\langle(S_{XX}-S_{YY})(S_{XX}+S_{YY})^*\rangle &
\langle|S_{XX}-S_{YY}|^2\rangle & \cdots\cdots\\
\langle(S_{XY}+S_{YX})(S_{XX}+S_{YY})^*\rangle&
\langle(S_{XY}+S_{YX})(S_{XX}-S_{YY})^*\rangle & \cdots\cdots\\
\langle j(S_{XY}-S_{YX})(S_{XX}+S_{YY})^*\rangle &
\langle j(S_{XY}-S_{YX})(S_{XX}-S_{YY})^*\rangle &
\end{matrix}\right.\\
\left.\begin{matrix}
& \langle(S_{XX}+S_{YY})(S_{XY}+S_{YX})^*\rangle
& \langle -j(S_{XX}+S_{YY})(S_{XY}-S_{YX})^*\rangle\\
\cdots\cdots& \langle(S_{XX}-S_{YY})(S_{XY}+S_{YX})^*\rangle
& \langle -j(S_{XX}-S_{YY})(S_{XY}-S_{YX})^*\rangle\\
\cdots\cdots& \langle|S_{XY}+S_{YX}|^2\rangle
& \langle-j(S_{XY}+S_{YX})(S_{XY}-S_{YX})^*\rangle\\
& \langle j(S_{XY}-S_{YX})(S_{XY}+S_{YX})^*\rangle
& \langle|S_{XY}-S_{YX}|^2\rangle
\end{matrix}\right]
\end{split}
\end{align}
\end{document}
但是有一个警告Overfull \hbox (213.43704pt too wide) in paragraph at lines 39--39
。
第 39 行是\end{align}
,创建的 pdf 如下:
begin{align}
我还删除了文档部分并尝试了 MathType 6.9 中的 代码,end{aline}
但是它是这样的:
看起来好像begin{split}
出end{split}
了什么问题!我该怎么办?
答案1
使用aligned
环境代替是split
没有问题的,特别是如果你添加geometry
包:
\documentclass[a4paper]{book}
\usepackage{geometry}
\usepackage{amsmath}
\begin{document}
\begin{align}
T_4 &= \langle \underline{k}\,.\,\underline{k}^{*^T} \rangle=
\left\langle
\begin{bmatrix}
\left|k_1\right|^2 & k_1k_2^* & k_1k_3^* & k_1k_4^* \\
k_2k_1^* & \left|k_2\right|^2 & k_2k_3^* & k_2k_4^* \\
k_3k_1^* & k_3k_2^* & \left|k_3\right|^2 & k_3k_4^* \\
k_4k_1^* & k_4k_2^* & k_4k_3^* & \left|k_4\right|^2
\end{bmatrix}
\right\rangle
\\
&=\frac{1}{2}
\!\begin{aligned}[t]
& \left[\begin{matrix}
\langle|S_{XX}+S_{YY}|^2\rangle &
\langle(S_{XX}+S_{YY})(S_{XX}-S_{YY})^*\rangle &\\
\langle(S_{XX}-S_{YY})(S_{XX}+S_{YY})^*\rangle &
\langle|S_{XX}-S_{YY}|^2\rangle & \cdots\cdots\\
\langle(S_{XY}+S_{YX})(S_{XX}+S_{YY})^*\rangle&
\langle(S_{XY}+S_{YX})(S_{XX}-S_{YY})^*\rangle & \cdots\cdots\\
\langle j(S_{XY}-S_{YX})(S_{XX}+S_{YY})^*\rangle &
\langle j(S_{XY}-S_{YX})(S_{XX}-S_{YY})^*\rangle &
\end{matrix}\right.\\
& \left.\begin{matrix}
& \langle(S_{XX}+S_{YY})(S_{XY}+S_{YX})^*\rangle
& \langle -j(S_{XX}+S_{YY})(S_{XY}-S_{YX})^*\rangle\\
\cdots\cdots& \langle(S_{XX}-S_{YY})(S_{XY}+S_{YX})^*\rangle
& \langle -j(S_{XX}-S_{YY})(S_{XY}-S_{YX})^*\rangle\\
\cdots\cdots& \langle|S_{XY}+S_{YX}|^2\rangle
& \langle-j(S_{XY}+S_{YX})(S_{XY}-S_{YX})^*\rangle\\
& \langle j(S_{XY}-S_{YX})(S_{XY}+S_{YX})^*\rangle
& \langle|S_{XY}-S_{YX}|^2\rangle
\end{matrix}\right]
\end{aligned}
\end{align}
\end{document}
答案2
\documentclass[a4paper]{book}
\usepackage{amsmath}
\begin{document}
{\setlength{\arraycolsep}{1.5pt}
$\begin{array}{rclc}
T_4 &=& \langle \underline{k}\,.\,\underline{k}^{*^T} \rangle=
\left\langle
\begin{bmatrix}
\left|k_1\right|^2 & k_1k_2^* & k_1k_3^* & k_1k_4^*\\
k_2k_1^* & \left|k_2\right|^2 & k_2k_3^* & k_2k_4^*\\
k_3k_1^* & k_3k_2^* & \left|k_3\right|^2 & k_3k_4^*\\
k_4k_1^* & k_4k_2^* & k_4k_3^* & \left|k_4\right|^2
\end{bmatrix}
\right\rangle
&(1)\\ \\[-.5em]
&=&\frac{1}{2}
\left[\begin{matrix}
\langle|S_{XX}+S_{YY}|^2\rangle &
\langle(S_{XX}+S_{YY})(S_{XX}-S_{YY})^*\rangle &\\
\langle(S_{XX}-S_{YY})(S_{XX}+S_{YY})^*\rangle &
\langle|S_{XX}-S_{YY}|^2\rangle & \cdots\\
\langle(S_{XY}+S_{YX})(S_{XX}+S_{YY})^*\rangle&
\langle(S_{XY}+S_{YX})(S_{XX}-S_{YY})^*\rangle & \cdots\\
\langle j(S_{XY}-S_{YX})(S_{XX}+S_{YY})^*\rangle &
\langle j(S_{XY}-S_{YX})(S_{XX}-S_{YY})^*\rangle &
\end{matrix}\right.
\\ &&&(2)\\[-.5em]
&&\hfill
\left.\begin{matrix}
\langle(S_{XX}+S_{YY})(S_{XY}+S_{YX})^*\rangle &
\langle -j(S_{XX}+S_{YY})(S_{XY}-S_{YX})^*\rangle\\
\langle(S_{XX}-S_{YY})(S_{XY}+S_{YX})^*\rangle &
\langle -j(S_{XX}-S_{YY})(S_{XY}-S_{YX})^*\rangle\\
\langle|S_{XY}+S_{YX}|^2\rangle &
\langle-j(S_{XY}+S_{YX})(S_{XY}-S_{YX})^*\rangle\\
\langle j(S_{XY}-S_{YX})(S_{XY}+S_{YX})^*\rangle &
\langle|S_{XY}-S_{YX}|^2\rangle
\end{matrix}\right]
\end{array}$}
\end{document}