这段代码有什么问题? \hbox 溢出

这段代码有什么问题? \hbox 溢出

我想在 word 中创建类似这样的内容MathType 6.9
在此处输入图片描述
但是我已经MikTex 2.9texmaker电脑上安装了。为了测试代码并查看其中存在什么问题,我在 LaTeX 中创建了以下文档。

\documentclass[a4paper]{book}
\usepackage{amsmath}

\begin{document}
\begin{align}
T_4 &= \langle \underline{k}\,.\,\underline{k}^{*^T} \rangle=
\left\langle 
\begin{bmatrix} 
\left|k_1\right|^2 & k_1k_2^* & k_1k_3^* & k_1k_4^*\\
k_2k_1^* & \left|k_2\right|^2 & k_2k_3^* & k_2k_4^*\\
k_3k_1^* & k_3k_2^* & \left|k_3\right|^2 & k_3k_4^*\\
k_4k_1^* & k_4k_2^* & k_4k_3^* & \left|k_4\right|^2
\end{bmatrix} 
\right\rangle
\\
&=\frac{1}{2}
\begin{split}
\left[\begin{matrix}
\langle|S_{XX}+S_{YY}|^2\rangle & 
\langle(S_{XX}+S_{YY})(S_{XX}-S_{YY})^*\rangle &\\
\langle(S_{XX}-S_{YY})(S_{XX}+S_{YY})^*\rangle & 
\langle|S_{XX}-S_{YY}|^2\rangle & \cdots\cdots\\
\langle(S_{XY}+S_{YX})(S_{XX}+S_{YY})^*\rangle& 
\langle(S_{XY}+S_{YX})(S_{XX}-S_{YY})^*\rangle & \cdots\cdots\\
\langle j(S_{XY}-S_{YX})(S_{XX}+S_{YY})^*\rangle & 
\langle j(S_{XY}-S_{YX})(S_{XX}-S_{YY})^*\rangle &
\end{matrix}\right.\\
\left.\begin{matrix}
& \langle(S_{XX}+S_{YY})(S_{XY}+S_{YX})^*\rangle 
& \langle -j(S_{XX}+S_{YY})(S_{XY}-S_{YX})^*\rangle\\
\cdots\cdots& \langle(S_{XX}-S_{YY})(S_{XY}+S_{YX})^*\rangle 
& \langle -j(S_{XX}-S_{YY})(S_{XY}-S_{YX})^*\rangle\\
\cdots\cdots& \langle|S_{XY}+S_{YX}|^2\rangle 
& \langle-j(S_{XY}+S_{YX})(S_{XY}-S_{YX})^*\rangle\\
& \langle j(S_{XY}-S_{YX})(S_{XY}+S_{YX})^*\rangle 
& \langle|S_{XY}-S_{YX}|^2\rangle
\end{matrix}\right]
\end{split}
\end{align}
\end{document}  

但是有一个警告Overfull \hbox (213.43704pt too wide) in paragraph at lines 39--39
第 39 行是\end{align}
,创建的 pdf 如下:
在此处输入图片描述
begin{align}我还删除了文档部分并尝试了 MathType 6.9 中的 代码,end{aline}但是它是这样的:

在此处输入图片描述

看起来好像begin{split}end{split}了什么问题!我该怎么办?

答案1

使用aligned环境代替是split没有问题的,特别是如果你添加geometry包:

\documentclass[a4paper]{book}
\usepackage{geometry}
\usepackage{amsmath}

\begin{document}

\begin{align}
  T_4 &= \langle \underline{k}\,.\,\underline{k}^{*^T} \rangle=
  \left\langle
  \begin{bmatrix}
  \left|k_1\right|^2 & k_1k_2^* & k_1k_3^* & k_1k_4^* \\
  k_2k_1^* & \left|k_2\right|^2 & k_2k_3^* & k_2k_4^* \\
  k_3k_1^* & k_3k_2^* & \left|k_3\right|^2 & k_3k_4^* \\
  k_4k_1^* & k_4k_2^* & k_4k_3^* & \left|k_4\right|^2
  \end{bmatrix}
  \right\rangle
  \\
  &=\frac{1}{2}
  \!\begin{aligned}[t]
  & \left[\begin{matrix}
  \langle|S_{XX}+S_{YY}|^2\rangle &
  \langle(S_{XX}+S_{YY})(S_{XX}-S_{YY})^*\rangle &\\
  \langle(S_{XX}-S_{YY})(S_{XX}+S_{YY})^*\rangle &
  \langle|S_{XX}-S_{YY}|^2\rangle & \cdots\cdots\\
  \langle(S_{XY}+S_{YX})(S_{XX}+S_{YY})^*\rangle&
  \langle(S_{XY}+S_{YX})(S_{XX}-S_{YY})^*\rangle & \cdots\cdots\\
  \langle j(S_{XY}-S_{YX})(S_{XX}+S_{YY})^*\rangle &
  \langle j(S_{XY}-S_{YX})(S_{XX}-S_{YY})^*\rangle &
  \end{matrix}\right.\\
  & \left.\begin{matrix}
  & \langle(S_{XX}+S_{YY})(S_{XY}+S_{YX})^*\rangle
  & \langle -j(S_{XX}+S_{YY})(S_{XY}-S_{YX})^*\rangle\\
  \cdots\cdots& \langle(S_{XX}-S_{YY})(S_{XY}+S_{YX})^*\rangle
  & \langle -j(S_{XX}-S_{YY})(S_{XY}-S_{YX})^*\rangle\\
  \cdots\cdots& \langle|S_{XY}+S_{YX}|^2\rangle
  & \langle-j(S_{XY}+S_{YX})(S_{XY}-S_{YX})^*\rangle\\
  & \langle j(S_{XY}-S_{YX})(S_{XY}+S_{YX})^*\rangle
  & \langle|S_{XY}-S_{YX}|^2\rangle
  \end{matrix}\right]
  \end{aligned}
\end{align}

\end{document} 

在此处输入图片描述

答案2

在此处输入图片描述

\documentclass[a4paper]{book}
\usepackage{amsmath}

\begin{document}
{\setlength{\arraycolsep}{1.5pt}
$\begin{array}{rclc}
T_4 &=& \langle \underline{k}\,.\,\underline{k}^{*^T} \rangle=
\left\langle 
\begin{bmatrix} 
\left|k_1\right|^2 & k_1k_2^* & k_1k_3^* & k_1k_4^*\\
k_2k_1^* & \left|k_2\right|^2 & k_2k_3^* & k_2k_4^*\\
k_3k_1^* & k_3k_2^* & \left|k_3\right|^2 & k_3k_4^*\\
k_4k_1^* & k_4k_2^* & k_4k_3^* & \left|k_4\right|^2
\end{bmatrix} 
\right\rangle
&(1)\\ \\[-.5em]
&=&\frac{1}{2}
\left[\begin{matrix}
\langle|S_{XX}+S_{YY}|^2\rangle & 
\langle(S_{XX}+S_{YY})(S_{XX}-S_{YY})^*\rangle &\\
\langle(S_{XX}-S_{YY})(S_{XX}+S_{YY})^*\rangle & 
\langle|S_{XX}-S_{YY}|^2\rangle & \cdots\\
\langle(S_{XY}+S_{YX})(S_{XX}+S_{YY})^*\rangle& 
\langle(S_{XY}+S_{YX})(S_{XX}-S_{YY})^*\rangle & \cdots\\
\langle j(S_{XY}-S_{YX})(S_{XX}+S_{YY})^*\rangle & 
\langle j(S_{XY}-S_{YX})(S_{XX}-S_{YY})^*\rangle &
\end{matrix}\right.
\\ &&&(2)\\[-.5em]
&&\hfill
\left.\begin{matrix}
\langle(S_{XX}+S_{YY})(S_{XY}+S_{YX})^*\rangle &
\langle -j(S_{XX}+S_{YY})(S_{XY}-S_{YX})^*\rangle\\
\langle(S_{XX}-S_{YY})(S_{XY}+S_{YX})^*\rangle &
\langle -j(S_{XX}-S_{YY})(S_{XY}-S_{YX})^*\rangle\\
\langle|S_{XY}+S_{YX}|^2\rangle &
\langle-j(S_{XY}+S_{YX})(S_{XY}-S_{YX})^*\rangle\\
\langle j(S_{XY}-S_{YX})(S_{XY}+S_{YX})^*\rangle &
\langle|S_{XY}-S_{YX}|^2\rangle
\end{matrix}\right]
\end{array}$}
\end{document}  

相关内容