我有这个代码:
\documentclass{article}
\usepackage{amsmath}
\begin{document}
\begin{gather*}
\max\nolimits_X \min\nolimits_{\vec{Y}} F(X, \vec{Y})) =
\sup\nolimits_{X} (\inf\nolimits_{\vec{Y}} F(X, \vec{Y})) = \Gamma_1, \\
\min\nolimits_{\vec{Y}} (\max\nolimits_X F(X, \vec{Y})) =
\inf\nolimits_{\vec{Y}} (\sup\nolimits_{X} F(X, \vec{Y})) = \Gamma_2
\end{gather*}
\end{document}
但我想要有索引方程。如果我使用\begin{equation} ...\end{equation}
,则没有任何断线。
答案1
带星号的环境(amsmath
例如gather*
、align*
和 )alignat*
不使用方程编号。只要说gather
和 就会出现方程编号,除非使用\nonumber
\documentclass{article}
\usepackage{amsmath}
\begin{document}
\begin{gather*}
\max\nolimits_X \min\nolimits_{\vec{Y}} F(X, \vec{Y})) =
\sup\nolimits_{X} (\inf\nolimits_{\vec{Y}} F(X, \vec{Y})) = \Gamma_1, \\
\min\nolimits_{\vec{Y}} (\max\nolimits_X F(X, \vec{Y})) =
\inf\nolimits_{\vec{Y}} (\sup\nolimits_{X} F(X, \vec{Y})) = \Gamma_2
\end{gather*}
\begin{gather}
\max\nolimits_X \min\nolimits_{\vec{Y}} F(X, \vec{Y})) =
\sup\nolimits_{X} (\inf\nolimits_{\vec{Y}} F(X, \vec{Y})) = \Gamma_1, \\
\min\nolimits_{\vec{Y}} (\max\nolimits_X F(X, \vec{Y})) =
\inf\nolimits_{\vec{Y}} (\sup\nolimits_{X} F(X, \vec{Y})) = \Gamma_2
\end{gather}
\end{document}
答案2
如果要将两个方程式作为一个块进行编号,请gathered
在内部使用equation
,或gather
对两个方程式都使用编号;但也许align
更好。
\documentclass{article}
\usepackage{amsmath}
\DeclareMathOperator{\maxn}{max}
\DeclareMathOperator{\minn}{min}
\DeclareMathOperator{\supn}{sup}
\DeclareMathOperator{\infn}{inf}
\begin{document}
One number for the whole block
\begin{equation}
\begin{gathered}
\maxn_X (\minn_{\vec{Y}} F(X, \vec{Y})) =
\supn_{X} (\infn_{\vec{Y}} F(X, \vec{Y})) = \Gamma_1, \\
\minn_{\vec{Y}} (\maxn_X F(X, \vec{Y})) =
\infn_{\vec{Y}} (\supn_{X} F(X, \vec{Y})) = \Gamma_2
\end{gathered}
\end{equation}
or numbers for both equations
\begin{gather}
\maxn_X (\minn_{\vec{Y}} F(X, \vec{Y})) =
\supn_{X} (\infn_{\vec{Y}} F(X, \vec{Y})) = \Gamma_1, \\
\minn_{\vec{Y}} (\maxn_X F(X, \vec{Y})) =
\infn_{\vec{Y}} (\supn_{X} F(X, \vec{Y})) = \Gamma_2
\end{gather}
Maybe you prefer alignment at the first equal sign
\begin{align}
\maxn_X (\minn_{\vec{Y}} F(X, \vec{Y})) &=
\supn_{X} (\infn_{\vec{Y}} F(X, \vec{Y})) = \Gamma_1, \\
\minn_{\vec{Y}} (\maxn_X F(X, \vec{Y})) &=
\infn_{\vec{Y}} (\supn_{X} F(X, \vec{Y})) = \Gamma_2
\end{align}
which would enhance the symmetry between the two formulas.
\end{document}
我定义了一些新的运算符以避免所有那些显式的\nolimits
。