多种问题类型设置查询

多种问题类型设置查询

我已在同一标题下使用了其他人在上一个问题中给出的代码。

我正是想产生所有四个选项,例如
(a)
(b)
(c)
(d)

由于选项的长度很大,因此下面给出的代码无法正常工作,无法达到我想要的结果。

请帮我。

\documentclass[12pt,a4paper]{exam}
    \usepackage{amsmath,amsthm,amsfonts,amssymb,dsfont}
    \setlength\parindent{0pt}
        %usage \choice{ }{ }{ }{ }
        %(A)(B)(C)(D)
        \newcommand{\fourch}[4]{
        \par
                \begin{tabular}{*{4}{@{}p{0.23\textwidth}}}
                (a)~#1 & (b)~#2 & (c)~#3 & (d)~#4
                \end{tabular}
        }

        %(A)(B)
        %(C)(D)
        \newcommand{\twoch}[4]{

                \begin{tabular}{*{2}{@{}p{0.46\textwidth}}}
                (a)~#1 & (b)~#2
                \end{tabular}
        \par
                \begin{tabular}{*{2}{@{}p{0.46\textwidth}}}
                (c)~#3 & (d)~#4
                \end{tabular}
        }

        %(A)
        %(B)
        %(C)
        %(D)
        \newcommand{\onech}[4]{
        \par
              (a)~#1 \par (b)~#2 \par (c)~#3 \par (d)~#4
        }

        \newlength\widthcha
        \newlength\widthchb
        \newlength\widthchc
        \newlength\widthchd
        \newlength\widthch
        \newlength\tabmaxwidth

        \setlength\tabmaxwidth{0.96\textwidth}
        \newlength\fourthtabwidth
        \setlength\fourthtabwidth{0.25\textwidth}
        \newlength\halftabwidth
        \setlength\halftabwidth{0.5\textwidth}

      \newcommand{\choice}[4]{%
      \settowidth\widthcha{AM.#1}\setlength{\widthch}{\widthcha}%
      \settowidth\widthchb{BM.#2}%
      \ifdim\widthch<\widthchb\relax\setlength{\widthch}{\widthchb}\fi%
      \settowidth\widthchb{CM.#3}%
      \ifdim\widthch<\widthchb\relax\setlength{\widthch}{\widthchb}\fi%
      \settowidth\widthchb{DM.#4}%
      \ifdim\widthch<\widthchb\relax\setlength{\widthch}{\widthchb}\fi%
      \ifdim\widthch<\fourthtabwidth
        \fourch{#1}{#2}{#3}{#4}
      \else\ifdim\widthch<\halftabwidth
        \ifdim\widthch>\fourthtabwidth
          \twoch{#1}{#2}{#3}{#4}
        \else
          \onech{#1}{#2}{#3}{#4}
        \fi
      \fi\fi
    }
    \begin{document}
     \begin{questions}
    \question If $a = 3 + i$ and $z = 2 - 3i$ then the points on the Argand diagram
    representing az, 3az and - az are
    \choice{Vertices of a right angled triangle}{ Vertices of an equilateral 
    triangle}{Vertices of an isosceles triangle}{Collinear}
    \question If z represents a complex number then $\arg (z) + \arg\left(\bar z\right)$ is 
    \choice{$\dfrac{\pi}{4}$}{$\dfrac{\pi}{2}$}{0}{$\dfrac{\pi}{6}$}
    \question If the amplitude of a complex number is $\dfrac{\pi}{2}$ then the number is
    \choice{ purely imaginary}{purely real}{0}{neither real nor imaginary}
    \question The value of $i + i^{22} + i^{23} + i^{24} + i^{25}$ is
    \choice{i}{-i}{1}{-1}
    \question The volume generated by 
    rotating the triangle with vertices at
    (0, 0), (3, 0) and (3, 3) about x-axis is
    \choice{$18\pi$}{$2\pi$}{$36\pi$}{$9\pi$}\end{questions}
    \end{document}

    \end{document}

我已将上述标题中上一个问题中的上述代码用于此。

答案1

更新 Gonzalo Medina 的评论以调整格式

我会直接使用包提供的问题类型exam,而不使用您定义的命令。请注意可用的两个环境choicesoneparchoices

\documentclass[12pt,a4paper]{exam}
    \usepackage{amsmath,amsthm,amsfonts,amssymb,dsfont}
    \renewcommand\choicelabel{(\alph{choice})}
    \renewcommand\choiceshook{\setlength{\leftmargin}{20pt}}

    \begin{document}
     \begin{questions}
    \question If $a = 3 + i$ and $z = 2 - 3i$ then the points on the Argand diagram
    representing az, 3az and - az are
    \begin{choices}
        \choice Vertices of a right angled triangle
        \choice Vertices of an equilateral triangle
        \choice Vertices of an isosceles triangle
        \choice Collinear
    \end{choices}
    \question If z represents a complex number then $\arg (z) + \arg\left(\bar z\right)$ is 
    \begin{choices}
        \choice $\dfrac{\pi}{4}$
        \choice $\dfrac{\pi}{2}$
        \choice 0
        \choice $\dfrac{\pi}{6}$
    \end{choices}
    \question If the amplitude of a complex number is $\dfrac{\pi}{2}$ then the number is
    \begin{choices}
        \choice purely imaginary
        \choice purely real
        \choice 0
        \choice neither real nor imaginary
    \end{choices}
    \question The value of $i + i^{22} + i^{23} + i^{24} + i^{25}$ is

    \begin{oneparchoices}
        \choice i
        \choice -i
        \choice 1
        \choice -1
    \end{oneparchoices}
    \question The volume generated by 
    rotating the triangle with vertices at (0, 0), (3, 0) and (3, 3) about x-axis is

    \begin{oneparchoices}
        \choice $18\pi$
        \choice $2\pi$
        \choice $36\pi$
        \choice $9\pi$
    \end{oneparchoices}        
\end{questions}
    \end{document}

    \end{document}

结果: 在此处输入图片描述

相关内容