\documentclass[11pt,paper=a4,answers]{exam}
\usepackage{graphicx,lastpage}
\usepackage{upgreek}
\usepackage{censor}
\censorruledepth=-.2ex
\censorruleheight=.1ex
\hyphenpenalty 10000
\usepackage[paperheight=10.5in,paperwidth=8.27in,bindingoffset=0in,left=0.8in,right=1in,
top=0.7in,bottom=1in,headsep=.5\baselineskip]{geometry}
\flushbottom
\usepackage[normalem]{ulem}
\renewcommand\ULthickness{2pt} %%---> For changing thickness of underline
\setlength\ULdepth{1.5ex}%\maxdimen ---> For changing depth of underline
\renewcommand{\baselinestretch}{1}
\pagestyle{empty}
\pagestyle{headandfoot}
\headrule
\newcommand{\continuedmessage}{%
\ifcontinuation{\footnotesize Question \ContinuedQuestion\ continues\ldots}{}%
}
\runningheader{\footnotesize Mathematics}
{\footnotesize Mathematics --- Differential Geometry}
{\footnotesize Page \thepage\ of \numpages}
\footrule
\footer{\footnotesize Student's name:}
{}
{\ifincomplete{\footnotesize Question \IncompleteQuestion\ continues
on the next page\ldots}{\iflastpage{\footnotesize End of exam} {\footnotesize Please go on to the next page\ldots}}}
\usepackage{cleveref}
\crefname{figure}{figure}{figures}
\crefname{question}{question}{questions}
%==============================================================
\renewcommand\thequestion{Q.\arabic{question}}
\renewcommand{\questionlabel}{\thequestion)}
\renewcommand{\questionshook}{%
\setlength{\leftmargin}{0pt}%
\setlength{\labelwidth}{-\labelsep}%
}
\pointsinrightmargin
\pointsdroppedatright
\marksnotpoints
\marginpointname{ \points}
\pointformat{\boldmath\themarginpoints}
%\bracketedpoints
\begin{document}
\thispagestyle{empty}
\noindent
\begin{minipage}[t]{\textwidth}%
\centering
\includegraphics[width=1cm]{por} \par
\underline{Name of the University}\par
\underline{Campus name} \par
\underline{Mid term examination -- Spring 2013} \par
\underline{SUBJECTIVE}
\end{minipage}
\par
\bigskip\bigskip
\begin{minipage}[t]{.5\textwidth}%
Degree Program: Mathematics \par
Course Title: Course Title\par
Date of Examination: 9.6.2014 \par
Teacher's name: ABCD \par
Student's name: \makebox[1.5in]{\hrulefill} \par
Course Code: Math-506
\end{minipage}%
\hfill
\begin{minipage}[t]{.4\textwidth}%
Class: BS \par
Semester: 2nd \par
Time duration: 3 hours \par
Total Marks: 60 \par
Roll No: \makebox[1in]{\hrulefill}
\end{minipage}
\par
\bigskip
\begin{questions}
\question[6]
\label{Q:perunit}
For a surface $\vec{r}= \vec{r} (u \cos v, u \sin v, f(u))$. Write down the first fundamental form of the surface. Show that the parametric curves are orthogonal.
\droppoints
\question[10]
\label{Q:zbus}
Prove that necessary conditions for the curve $u = u(t), v = v(t)$ on a surface $\vec(r) = \vec(r)(u,v)$ to be geodesic is that \begin{equation}U \frac{\partial T}{\partial \dot{v}} - V \frac{\partial T}{\partial \dot{u}}\end{equation}
where
$$ U = \frac{d}{dt} \Big(\frac{\partial T}{\partial \dot{u}}\Big) - \frac{\partial T}{\partial u} = \frac{1}{2T}\frac{dT}{dt}\frac{\partial T}{\partial \dot{u}}$$
$$ V = \frac{d}{dt} \Big(\frac{\partial T}{\partial \dot{v}}\Big) - \frac{\partial T}{\partial v} = \frac{1}{2T}\frac{dT}{dt}\frac{\partial T} {\partial \dot{v}}$$
\droppoints
\question[8]
\label{Q:zbus}
For the curve
$$
x = a(3u - u^{3}),\qquad y = 3au^{2},\qquad z = a(3u + u^{3})
$$
show that $$\uptau = k = \frac{1}{3a(1+u^{2})^{2}}$$
\droppoints
\question[8]
\label{Q:zbus}
A curve is uniquely determined except as the position in space, when its curvature and torsion are given functions of its arc length.
\droppoints
\question[8]
\label{Q:zbus}
Show that there exists an infinite family of involutes for a gives curve.
\droppoints
\newpage
\question[08]
\label{Q:ybus}
Give short answers of the following questions.
\begin{enumerate}
\item
\item If equation of the circle is $x^{2} + y^{2} = a^{2}$ then the parametric equations of circles are \xblackout{forty two}?
\end{enumerate}
\end{questions}
\begin{center}
\rule{.5\textwidth}{1pt}
\end{center}
\end{document}
我希望图标(徽标)位于左侧。我的代码将其放在大学名称上方。
我如何将徽标放在大学名称等的左侧?
答案1
使用tabular
;我在图像和标题之间设置了 1cm 的间隔,请进行调整以适合您。
请注意,标题位于中央,因为图像包含在零宽度框中。
请使用粗体或斜体来强调,不要使用下划线。在 LaTeX 中也应避免使用;我在第二个问题中$$
展示了用法。gather*
\documentclass[11pt,paper=a4,answers]{exam}
\usepackage[
paperheight=10.5in,
paperwidth=8.27in,
bindingoffset=0in,
left=0.8in,
right=1in,
top=0.7in,
bottom=1in,
headsep=.5\baselineskip
]{geometry}
\usepackage{amsmath,graphicx,lastpage}
\usepackage{upgreek}
\usepackage{censor}
\censorruledepth=-.2ex
\censorruleheight=.1ex
\flushbottom
\usepackage{cleveref}
\pagestyle{headandfoot}
\headrule
\newcommand{\continuedmessage}{%
\ifcontinuation{\footnotesize Question \ContinuedQuestion\ continues\ldots}{}%
}
\runningheader{\footnotesize Mathematics}
{\footnotesize Mathematics --- Differential Geometry}
{\footnotesize Page \thepage\ of \numpages}
\footrule
\footer{\footnotesize Student's name:}
{}
{\ifincomplete{\footnotesize Question \IncompleteQuestion\ continues
on the next page\ldots}{\iflastpage{\footnotesize End of exam}
{\footnotesize Please go on to the next page\ldots}}}
\crefname{figure}{figure}{figures}
\crefname{question}{question}{questions}
%==============================================================
\renewcommand\thequestion{Q.\arabic{question}}
\renewcommand{\questionlabel}{\thequestion)}
\renewcommand{\questionshook}{%
\setlength{\leftmargin}{0pt}%
\setlength{\labelwidth}{-\labelsep}%
}
\pointsinrightmargin
\pointsdroppedatright
\marksnotpoints
\marginpointname{ \points}
\pointformat{\boldmath\themarginpoints}
%\bracketedpoints
\begin{document}
\thispagestyle{empty}
\begin{center}
\makebox[0pt][r]{%
\begin{tabular}{@{}c@{}}
\includegraphics[width=1cm]{example-image-9x16}
\end{tabular}%
\hspace{1cm}% <----- CHANGE HERE THE SEPARATION
}%
\begin{tabular}{@{}c@{}}
\bfseries Name of the University\\
\itshape Campus name \\
\bfseries Mid term examination -- Spring 2013 \\
\bfseries SUBJECTIVE
\end{tabular}
\end{center}
\begin{tabular}[t]{@{}l@{}}%
Degree Program: Mathematics \\
Course Title: Course Title\\
Date of Examination: 9.6.2014 \\
Teacher's name: ABCD \\
Student's name: \makebox[1.5in]{\hrulefill} \\
Course Code: Math-506
\end{tabular}\hspace{\stretch{2}}%
\begin{tabular}[t]{@{}l@{}}
Class: BS \\
Semester: 2nd \\
Time duration: 3 hours \\
Total Marks: 60 \\
Roll No: \makebox[1in]{\hrulefill}
\end{tabular}\hspace*{\stretch{1}}
\bigskip
\begin{questions}
\question[6]
\label{Q:perunit}
For a surface $\vec{r}= \vec{r} (u \cos v, u \sin v, f(u))$. Write down the first fundamental form of
the surface. Show that the parametric curves are orthogonal.
\droppoints
\question[10]
\label{Q:zbus}
Prove that necessary conditions for the curve $u = u(t), v = v(t)$ on a surface $\vec(r) =
\vec(r)(u,v)$ to be geodesic is that
\begin{equation}
U \frac{\partial T}{\partial \dot{v}} - V \frac{\partial T}{\partial \dot{u}}
\end{equation}
where
\begin{gather*}
U = \frac{d}{dt} \Bigl(\frac{\partial T}{\partial \dot{u}}\Bigr) -
\frac{\partial T}{\partial u} = \frac{1}{2T}\frac{dT}{dt}\frac{\partial T}{\partial \dot{u}}
\\
V = \frac{d}{dt} \Bigl(\frac{\partial T}{\partial \dot{v}}\Bigr) -
\frac{\partial T}{\partial v} = \frac{1}{2T}\frac{dT}{dt}\frac{\partial T} {\partial \dot{v}}
\end{gather*}
\droppoints
\end{questions}
\end{document}
答案2
加载array
包(针对m
列类型),然后使用tabular
类似的
\begin{tabular}{cm{\dimexpr\linewidth-1cm-4\tabcolsep\relax}}%
\includegraphics[width=1cm]{example-image}
&
\centering
\underline{Name of the University}\par
\underline{Campus name} \par
\underline{Mid term examination -- Spring 2013} \par
\underline{SUBJECTIVE}\par
\end{tabular}
完整代码(感谢泄露整个试卷;-)
):
\documentclass[11pt,paper=a4,answers]{exam}
\usepackage{graphicx,lastpage,array}
\usepackage{upgreek}
\usepackage{censor}
\censorruledepth=-.2ex
\censorruleheight=.1ex
\hyphenpenalty 10000
\usepackage[paperheight=10.5in,paperwidth=8.27in,bindingoffset=0in,left=0.8in,right=1in,
top=0.7in,bottom=1in,headsep=.5\baselineskip]{geometry}
\flushbottom
\usepackage[normalem]{ulem}
\renewcommand\ULthickness{2pt} %%---> For changing thickness of underline
\setlength\ULdepth{1.5ex}%\maxdimen ---> For changing depth of underline
\renewcommand{\baselinestretch}{1}
\pagestyle{empty}
\pagestyle{headandfoot}
\headrule
\newcommand{\continuedmessage}{%
\ifcontinuation{\footnotesize Question \ContinuedQuestion\ continues\ldots}{}%
}
\runningheader{\footnotesize Mathematics}
{\footnotesize Mathematics --- Differential Geometry}
{\footnotesize Page \thepage\ of \numpages}
\footrule
\footer{\footnotesize Student's name:}
{}
{\ifincomplete{\footnotesize Question \IncompleteQuestion\ continues
on the next page\ldots}{\iflastpage{\footnotesize End of exam} {\footnotesize Please go on to the next page\ldots}}}
\usepackage{cleveref}
\crefname{figure}{figure}{figures}
\crefname{question}{question}{questions}
%==============================================================
\renewcommand\thequestion{Q.\arabic{question}}
\renewcommand{\questionlabel}{\thequestion)}
\renewcommand{\questionshook}{%
\setlength{\leftmargin}{0pt}%
\setlength{\labelwidth}{-\labelsep}%
}
\pointsinrightmargin
\pointsdroppedatright
\marksnotpoints
\marginpointname{ \points}
\pointformat{\boldmath\themarginpoints}
%\bracketedpoints
\begin{document}
\thispagestyle{empty}
\noindent
\begin{tabular}{cm{\dimexpr\linewidth-1cm-4\tabcolsep\relax}}%
\includegraphics[width=1cm]{example-image}
&
\centering
\underline{Name of the University}\par
\underline{Campus name} \par
\underline{Mid term examination -- Spring 2013} \par
\underline{SUBJECTIVE}\par
\end{tabular}
\par
\bigskip\bigskip
\begin{minipage}[t]{.5\textwidth}%
Degree Program: Mathematics \par
Course Title: Course Title\par
Date of Examination: 9.6.2014 \par
Teacher's name: ABCD \par
Student's name: \makebox[1.5in]{\hrulefill} \par
Course Code: Math-506
\end{minipage}%
\hfill
\begin{minipage}[t]{.4\textwidth}%
Class: BS \par
Semester: 2nd \par
Time duration: 3 hours \par
Total Marks: 60 \par
Roll No: \makebox[1in]{\hrulefill}
\end{minipage}
\par
\bigskip
\begin{questions}
\question[6]
\label{Q:perunit}
For a surface $\vec{r}= \vec{r} (u \cos v, u \sin v, f(u))$. Write down the first fundamental form of the surface. Show that the parametric curves are orthogonal.
\droppoints
\question[10]
\label{Q:zbus}
Prove that necessary conditions for the curve $u = u(t), v = v(t)$ on a surface $\vec(r) = \vec(r)(u,v)$ to be geodesic is that \begin{equation}U \frac{\partial T}{\partial \dot{v}} - V \frac{\partial T}{\partial \dot{u}}\end{equation}
where
$$ U = \frac{d}{dt} \Big(\frac{\partial T}{\partial \dot{u}}\Big) - \frac{\partial T}{\partial u} = \frac{1}{2T}\frac{dT}{dt}\frac{\partial T}{\partial \dot{u}}$$
$$ V = \frac{d}{dt} \Big(\frac{\partial T}{\partial \dot{v}}\Big) - \frac{\partial T}{\partial v} = \frac{1}{2T}\frac{dT}{dt}\frac{\partial T} {\partial \dot{v}}$$
\droppoints
\question[8]
\label{Q:zbus}
For the curve
$$
x = a(3u - u^{3}),\qquad y = 3au^{2},\qquad z = a(3u + u^{3})
$$
show that $$\uptau = k = \frac{1}{3a(1+u^{2})^{2}}$$
\droppoints
\question[8]
\label{Q:zbus}
A curve is uniquely determined except as the position in space, when its curvature and torsion are given functions of its arc length.
\droppoints
\question[8]
\label{Q:zbus}
Show that there exists an infinite family of involutes for a gives curve.
\droppoints
\newpage
\question[08]
\label{Q:ybus}
Give short answers of the following questions.
\begin{enumerate}
\item
\item If equation of the circle is $x^{2} + y^{2} = a^{2}$ then the parametric equations of circles are \xblackout{forty two}?
\end{enumerate}
\end{questions}
\begin{center}
\rule{.5\textwidth}{1pt}
\end{center}
\end{document}
如果您想要将徽标移得更近,请使用tabular
如下所示的两个 s:
.
.
.
\thispagestyle{empty}
\noindent
{
\centering
\begin{tabular}{c}%
\includegraphics[width=1cm]{example-image}
\end{tabular}
\begin{tabular}{c}%
\underline{Name of the University}\\
\underline{Campus name} \\
\underline{Mid term examination -- Spring 2013} \\
\underline{SUBJECTIVE}\
\end{tabular}
\par
}
\bigskip\bigskip
.
.
.