\documentclass{article}
\usepackage{algorithm,algpseudocode}
\begin{document
\begin{algorithm}
\caption{PUML Algorithm}
\label{PUML Algorithm}
\begin{algorithmic}[1]
\Procedure{Path\textendash Binary table for Path}{}
\For {i = 1 to Number of Nodes}
\For {j = 1 to Number of Nodes}
\State $fx$ = $\left\{ \begin{array}{rl}$
$ 1 & \text{N(i) } \\ 0$ $& \text{otherwise}$
$\end{array} \right$
\If $N (i) connect to N (j)$
\State Matrix element represent as 1
\Else
\State Matrix element represent as 0
\EndIf
\EndFor
\EndFor
\State $D =\sum f(x)$
\State $L=max (d)$
\State Calculate the node connection for Lth node and place
\State Update the binary table by eliminating the node from binary table
\State Initialize particles
\State Position of particles = x and y coordinating points of node location.
\State $Velocity = random (number of nodes)$
\State Check fitness for given position by using objective function.
\State $F_{Position}$ = $\sum {i=1}^n$ ${i\times\cos((i+1)\times particle+i)}\times \sum{j=1}^m$ ${j\times\cos((j+1)\times particle+j) + Weight(Particle)}$
\State $ Minimum (F_Position)$
\State $Velocity= w \times velocity+c1 \times(r1*(L_Position-Position))+c2 \times(r2 \times (G_Position-Position))$
\State $Position = Position + Velocity$
\For {k = 1 to iteration}
\If $Present_fitness < Last_fitness$
\State Update fitness value
\EndIf
\State $Update velocity and position$
\EndFor
\State $ Find maximum (fitness value), mf = max (fitness)$
\State $Place SELECTED INDEX on that node. Pth_((x,y) )=N(Ind(mf))$
\State $ Update binary table by eliminating the node from binary table$
\State $Loop to Step 6 until binary table gets empty$
\EndProcedure
\end{algorithmic}
\end{algorithm}
\end{document}
有人能帮助我吗我在以下部分遇到了错误
\State $fx$ = $\left\{ \begin{array}{rl}$
$ 1 & \text{N(i) } \\ 0$ $& \text{otherwise}$
$\end{array} \right$
\If $N (i) connect to N (j)$
并且`
\State $F_{Position}$ = $\sum {i=1}^n$ ${i\times\cos((i+1)\times particle+i)}\times \sum{j=1}^m$ ${j\times\cos((j+1)\times particle+j) + Weight(Particle)}$
\State $ Minimum (F_Position)$
\State $Velocity= w \times velocity+c1 \times(r1*(L_Position-Position))+c2 \times(r2 \times (G_Position-Position))$
答案1
您不需要那么多,$
尤其是对于array
。而且最好在许多地方使用\text
(或)。进一步→等等。\mathrm
max
\max
\documentclass{article}
\usepackage{algorithm,algpseudocode,amsmath}
\begin{document}
\begin{algorithm}
\caption{PUML Algorithm}
\label{PUML Algorithm}
\begin{algorithmic}[1]
\Procedure{Path\textendash Binary table for Path}{}
\For {i = 1 to Number of Nodes}
\For {j = 1 to Number of Nodes}
\State $f_x = \left\{ \begin{array}{rl}
1 & \text{N(i) } \\ 0 & \text{otherwise}
\end{array} \right.$
\If $N (i)$ connect to $N (j)$
\State Matrix element represent as 1
\Else
\State Matrix element represent as 0
\EndIf
\EndFor
\EndFor
\State $D =\sum f(x)$
\State $L=\max (d)$
\State Calculate the node connection for $L^{\text{th}}$ node and place
\State Update the binary table by eliminating the node from binary table
\State Initialize particles
\State Position of particles $= x$ and $y$ coordinating points of node location.
\State $\text{Velocity} = \text{random (number of nodes)}$
\State Check fitness for given position by using objective function.
\State $F_{\text{Position}}$ = $\sum {i=1}^n$ ${i\times\cos((i+1)\times \text{particle}+i)}\times \sum{j=1}^m$ ${j\times\cos((j+1)\times \text{particle}+j) + \text{Weight(Particle)}}$
\State Minimum $(F_\text{Position})$
\State $\text{Velocity}= w \times \text{velocity}+c1 \times(r1*(L_\text{Position$-$Position}))+c2 \times(r2 \times (G_\text{Position$-$Position}))$
\State $\text{Position} = \text{Position} + \text{Velocity}$
\For {k = 1 to iteration}
\If $ \,\text{Present}_\text{fitness} < \text{Last}_\text{fitness}$
\State Update fitness value
\EndIf
\State Update velocity and position
\EndFor
\State Find maximum (fitness value), $mf = \max (\text{fitness})$
\State Place SELECTED INDEX on that node. $P^{\text{th}}_((x,y) )=N(Ind(mf))$
\State Update binary table by eliminating the node from binary table
\State Loop to Step 6 until binary table gets empty
\EndProcedure
\end{algorithmic}
\end{algorithm}
\end{document}