我想在 LaTeX 中重新创建一个图表,所以我尽了最大努力,用矩阵创建了一些东西。我真的很满意,但我仍然没有带有“reële nulpunten”和“complexe nulpunten”的箭头以及下面的两个箭头。有人可以尝试重新创建这些吗?我真的不知道该怎么做……
\documentclass[11pt]{article}
\usepackage[margin=1.1in,a4paper]{geometry}
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{tikz}
\usetikzlibrary{tikzmark,calc}
\usepackage{multirow}
\newcommand{\cfbox}[2]{%
\colorlet{currentcolor}{.}%
{\color{#1}%
\fbox{\color{currentcolor}#2}}%
}
\begin{document}
\definecolor{blauw}{HTML}{0074C8}
\definecolor{bruin}{HTML}{753700}
\definecolor{groen}{HTML}{00E12C}
\renewcommand{\arraystretch}{2.2}
\begin{tabular}{ l c c }
& & Galoisgroep \\
Splijtlichaam & \cfbox{bruin}{{\color{bruin}$\Sigma$}\hspace{5pt} $(x \tikzmark{a}- a_1)(x \tikzmark{b}- a_2)(x \tikzmark{c}- a_3)(x \tikzmark{d}- a_4)(x \tikzmark{e}-\tikzmark{f} a_5)$} & $\{e\}$ \\
\multirow{2}{*}{Intermediaire lichamen} & \multicolumn{1}{c}{\cfbox{blauw}{ \color{blauw}{$\Sigma \cap \mathbb{R}$} \hspace{5pt} {\color{black} $(x - a_1)(x - a_2)(x - a_3)(x^2 + Ax + B)$}}} & \multicolumn{1}{c}{$C_2$} \\
& \multicolumn{1}{c}{\cfbox{groen}{\color{groen}$\mathbb{Q}[a_1]$ \hspace{3cm}}} & \multicolumn{1}{c}{$\operatorname{Gal}({\color{groen}\mathbb{Q}[a_1]}/ {\color{bruin}\Sigma})$} \\
Grondlichaam & \cfbox{purple}{{\color{purple} $\mathbb{Q}$} \hspace{5pt} $x^5 -6x + 3$} & $\operatorname{Gal}({\color{purple}\mathbb{Q}}/ {\color{bruin}\Sigma})$
\end{tabular}
\begin{tikzpicture}[overlay,remember picture]
\coordinate (x) at ($({pic cs:f})-({pic cs:e})$);
\foreach \i in {a,b,c,d,e} \coordinate (\i) at ($({pic cs:\i})+.5*(x)+(0,9pt)$);
\draw (a) -- ++(0,5pt) coordinate (p) -| (c) (b) -- (b |- p) node [anchor=south] {\footnotesize{Reële nulpunten}};
\draw (d) -- (p -| d) -- (e |- p) node [midway,anchor=south] {\footnotesize{Complexe nulpunten}} -- (e) ;
\end{tikzpicture}
\end{document}
答案1
更新
使用您的修改后的代码(其中包含我下面的原始答案)来回答您的后续问题,您可以在任何您想要的地方添加额外的s,然后根据需要在覆盖\tikzmark{}
中注释方程式。tikzpicture
例如:
\documentclass[11pt,a4paper]{article}
\usepackage[margin=1.1in]{geometry}
\usepackage{amssymb}
\usepackage{mathtools}
\usepackage{tikz}
\usetikzlibrary{tikzmark,calc}
\usepackage{multirow,array,tabularx}
\newcommand{\cfbox}[2]{%
\colorlet{currentcolor}{.}%
{\color{#1}%
\fbox{\color{currentcolor}#2}}%
}
\begin{document}
\definecolor{blauw}{HTML}{0074C8}
\definecolor{bruin}{HTML}{753700}
\definecolor{groen}{HTML}{00E12C}
\makebox[\linewidth-50pt]{%
\renewcommand{\arraystretch}{2.2}
\begin{tabular}{ c c c }
& & Galoisgroep \\
Splijtlichaam & \cfbox{bruin}{{\color{bruin}$\Sigma$}\hspace{5pt} $(x \tikzmark{a}- a_1)(x \tikzmark{b}- a_2)(x \tikzmark{c}- a_3)(x \tikzmark{d}- a_4)(x \tikzmark{e}-\tikzmark{f} a_5)$} & $\{e\}$ \\
\multirow{2}{*}[-1ex]{Intermediaire lichamen} & \cfbox{blauw}{ \color{blauw}{$\Sigma \cap \mathbb{R}$} \hspace{5pt} {\color{black} $(x - a_1)(x - a_2)(x - a_3)(x^2 + Ax + B)$}} & $C_2$ \\
& \cfbox{groen}{\color{groen}$\mathbb{Q}[a\tikzmark{h}_1]$\hspace{20mm}}\tikzmark{i} & $\operatorname{Gal}({\color{groen}\mathbb{Q}[a_1]}/ {\color{bruin}\Sigma})$ \\
Grondlichaam & \cfbox{purple}{{\color{purple} $\mathbb{Q}$} \hspace{5pt} $x^5 \tikzmark{g}- 6x + 3$}\tikzmark{j} & $\operatorname{Gal}({\color{purple}\mathbb{Q}}/ {\color{bruin}\Sigma})$\\
\end{tabular}
}
\begin{tikzpicture}[overlay, remember picture, font=\footnotesize]
\coordinate (x) at ($({pic cs:f})-({pic cs:e})$);
\foreach \i in {a,b,c,d,e,g} \coordinate (\i) at ($({pic cs:\i})+.5*(x)+(0,9pt)$);
\foreach \i in {h,i,j} \coordinate (\i) at (pic cs:\i);
\draw (a) -- ++(0,5pt) coordinate (p) -| (c) (b) -- (b |- p) node [anchor=south] {Reële nulpunten};
\draw (d) -- (p -| d) -- (e |- p) node [midway,anchor=south] {Complexe nulpunten} -- (e) ;
\draw [->] (h |- i) [out=-90,in=90] to node [pos=.6, left, xshift=-5pt] {some label here} (g);
\draw [->] (j) +(2.5pt,.5\baselineskip) [bend right] to node [midway, right] {5}([yshift=.5\baselineskip,xshift=2.5pt]i) ;
\end{tikzpicture}
\end{document}
原来的
毫无疑问,有更好的方法来管理方程的对齐,但这只是一种使用在顶部绘制注释的方法蒂克兹马克:
\documentclass{article}
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{tikz}
\usetikzlibrary{tikzmark,calc}
\newcommand{\cfbox}[2]{%
\colorlet{currentcolor}{.}%
{\color{#1}%
\fbox{\color{currentcolor}#2}}%
}
\definecolor{blauw}{HTML}{0074C8}
\definecolor{bruin}{HTML}{753700}
\definecolor{groen}{HTML}{00E12C}
\begin{document}
\hspace{-50pt}
$ \begin{matrix}
& & \ \ \ $Galoisgroep$ \\
& & \\
$\ \ \ \ \ Splijtlichaam$ \hspace{43.5pt}& \cfbox{bruin}{${\Large{\color{bruin}\Sigma}}\hspace{5pt} (x \tikzmark{a}- a_1)(x \tikzmark{b}- a_2)(x \tikzmark{c}- a_3)(x \tikzmark{d}- a_4)(x \tikzmark{e}-\tikzmark{f} a_5)$} & \ \ \ \ \{e\} \\
& & \\
\end{matrix}$
\hspace{-50pt}Intermediare lichamen \ \ \ $\left[ \begin{matrix}\ \ \ \cfbox{blauw}{${\color{blauw} \Sigma \cap \mathbb{R}} \hspace{5pt} (x - a_1)(x - a_2)(x - a_3)(x^2 + Ax + B)$ } & C_2 \\ & \\ \cfbox{groen}{${\color{groen}\mathbb{Q}[a_1] \hspace{1cm} \hspace{1cm} }$} & \operatorname{Gal}({\color{groen}\mathbb{Q}[a_1]}/ {\color{bruin}\Sigma}) \end{matrix}\right.$
\hspace{-50pt}$ \begin{matrix}
& & \\
$ \ \ \ Grondlichaam$ & \hspace{3,7cm} \cfbox{purple}{${\color{purple} \mathbb{Q}} \hspace{5pt} x^5 -6x + 3$} & \hspace{2,9cm} \operatorname{Gal}({\color{purple}\mathbb{Q}}/ {\color{bruin}\Sigma})
\end{matrix} $
\begin{tikzpicture}[overlay,remember picture]
\coordinate (x) at ($({pic cs:f})-({pic cs:e})$);
\foreach \i in {a,b,c,d,e} \coordinate (\i) at ($({pic cs:\i})+.5*(x)+(0,7.5pt)$);
\draw (a) -- ++(0,5pt) coordinate (p) -| (c) (b) -- (b |- p) node [anchor=south] {Label here};
\draw (d) -- (p -| d) -- (e |- p) node [midway,anchor=south] {Label here} -- (e) ;
\end{tikzpicture}
\end{document}