我对此很陌生。这就是我正在尝试做的事情:
\begin{equation}\label{eq.7}
\begin{split}
CTS =
{P_1}_1 \cdot {L_1}_1 + {P_1}_2 \cdot {L_1}_2 + {P_1}_3 \cdot {L_1}_3+{P_1}_4
\cdot {L_1}_4+{P_1}_5 \cdot {L_1}_5 +\\
{P_2}_1 \cdot {L_2}_1 + {P_2}_2 \cdot {L_2}_2 + {P_2}_3 \cdot {L_2}_3+{P_2}_4
\cdot {L_2}_4+{P_2}_5 \cdot {L_2}_5+\\
{P_3}_1 \cdot {L_3}_1 + {P_3}_2 \cdot {L_3}_2 + {P_3}_3 \cdot {L_3}_3+{P_3}_4
\cdot {L_3}_4+{P_3}_5 \cdot {L_3}_5+\\
{P_4}_1 \cdot {L_4}_1 + {P_4}_2 \cdot {L_4}_2 + {P_4}_3 \cdot {L_4}_3+{P_4}_4
\cdot {L_4}_4+{P_4}_5 \cdot {L_4}_5+\\
{P_5}_1 \cdot {L_5}_1 + {P_5}_2 \cdot {L_5}_2 + {P_5}_3 \cdot {L_5}_3+{P_5}_4
\cdot {L_5}_4+{P_5}_5 \cdot {L_5}_5\\
\end{split}
\end{equation}
除了最后一行以外,其他都很好。如何纠正最后一行的对齐?
答案1
我认为你不想要类似的东西{P_1}_1
,而是P_{11}
。这里有两种可能的实现,一种在末尾有 + 号,另一种在左边。
\documentclass{article}
\usepackage{amsmath}
\begin{document}
\begin{equation}\label{eq.7}
\begin{split}
CTS ={}
& P_{11}L_{11} + P_{12}L_{12} + P_{13}L_{13} + P_{14}L_{14} + P_{15}L_{15} +{} \\
& P_{21}L_{21} + P_{22}L_{22} + P_{23}L_{23} + P_{24}L_{24} + P_{25}L_{25} +{} \\
& P_{31}L_{31} + P_{32}L_{32} + P_{33}L_{33} + P_{34}L_{34} + P_{35}L_{35} +{} \\
& P_{41}L_{41} + P_{42}L_{42} + P_{43}L_{43} + P_{44}L_{44} + P_{45}L_{45} +{} \\
& P_{51}L_{51} + P_{52}L_{52} + P_{53}L_{53} + P_{54}L_{54} + P_{55}L_{55}
\end{split}
\end{equation}
\begin{equation}
\begin{split}
CTS ={}& P_{11}L_{11} + P_{12}L_{12} + P_{13}L_{13} + P_{14}L_{14} + P_{15}L_{15}\\
{}+{}& P_{21}L_{21} + P_{22}L_{22} + P_{23}L_{23} + P_{24}L_{24} + P_{25}L_{25}\\
{}+{}& P_{31}L_{31} + P_{32}L_{32} + P_{33}L_{33} + P_{34}L_{34} + P_{35}L_{35}\\
{}+{}& P_{41}L_{41} + P_{42}L_{42} + P_{43}L_{43} + P_{44}L_{44} + P_{45}L_{45}\\
{}+{}& P_{51}L_{51} + P_{52}L_{52} + P_{53}L_{53} + P_{54}L_{54} + P_{55}L_{55}
\end{split}
\end{equation}
\end{document}
答案2
您可以使用&
对齐不同行中的项目
\begin{equation}\label{eq.7}
\begin{split}
CTS =
{P_1}_1 \cdot {L_1}_1 &+ {P_1}_2 \cdot {L_1}_2 + {P_1}_3 \cdot {L_1}_3+{P_1}_4
\cdot {L_1}_4+{P_1}_5 \cdot {L_1}_5 +\\
{P_2}_1 \cdot {L_2}_1 &+ {P_2}_2 \cdot {L_2}_2 + {P_2}_3 \cdot {L_2}_3+{P_2}_4
\cdot {L_2}_4+{P_2}_5 \cdot {L_2}_5+\\
{P_3}_1 \cdot {L_3}_1 &+{P_3}_2 \cdot {L_3}_2 + {P_3}_3 \cdot {L_3}_3+{P_3}_4
\cdot {L_3}_4+{P_3}_5 \cdot {L_3}_5+\\
{P_4}_1 \cdot {L_4}_1 &+ {P_4}_2 \cdot {L_4}_2 + {P_4}_3 \cdot {L_4}_3+{P_4}_4
\cdot {L_4}_4+{P_4}_5 \cdot {L_4}_5+\\
{P_5}_1 \cdot {L_5}_1 &+ {P_5}_2 \cdot {L_5}_2 + {P_5}_3 \cdot {L_5}_3+{P_5}_4
\cdot {L_5}_4+{P_5}_5 \cdot {L_5}_5
\end{split}
\end{equation}
答案3
使用\phantom
:
\cdot {L_5}_4+{P_5}_5 \cdot {L_5}_5\phantom{+}\\