分裂方程

分裂方程

我对此很陌生。这就是我正在尝试做的事情:

\begin{equation}\label{eq.7}
    \begin{split}
    CTS = 
    {P_1}_1 \cdot {L_1}_1 + {P_1}_2 \cdot {L_1}_2 + {P_1}_3 \cdot {L_1}_3+{P_1}_4
      \cdot {L_1}_4+{P_1}_5 \cdot {L_1}_5 +\\
    {P_2}_1 \cdot {L_2}_1 + {P_2}_2 \cdot {L_2}_2 + {P_2}_3 \cdot {L_2}_3+{P_2}_4
      \cdot {L_2}_4+{P_2}_5 \cdot {L_2}_5+\\
    {P_3}_1 \cdot {L_3}_1 + {P_3}_2 \cdot {L_3}_2 + {P_3}_3 \cdot {L_3}_3+{P_3}_4
      \cdot {L_3}_4+{P_3}_5 \cdot {L_3}_5+\\
    {P_4}_1 \cdot {L_4}_1 + {P_4}_2 \cdot {L_4}_2 + {P_4}_3 \cdot {L_4}_3+{P_4}_4
      \cdot {L_4}_4+{P_4}_5 \cdot {L_4}_5+\\
    {P_5}_1 \cdot {L_5}_1 + {P_5}_2 \cdot {L_5}_2 + {P_5}_3 \cdot {L_5}_3+{P_5}_4
      \cdot {L_5}_4+{P_5}_5 \cdot {L_5}_5\\
    \end{split}
\end{equation}

除了最后一行以外,其他都很好。如何纠正最后一行的对齐?

答案1

我认为你不想要类似的东西{P_1}_1,而是P_{11}。这里有两种可能的实现,一种在末尾有 + 号,另一种在左边。

\documentclass{article}
\usepackage{amsmath}
\begin{document}
\begin{equation}\label{eq.7}
\begin{split}
  CTS ={}
  & P_{11}L_{11} + P_{12}L_{12} + P_{13}L_{13} + P_{14}L_{14} + P_{15}L_{15} +{} \\
  & P_{21}L_{21} + P_{22}L_{22} + P_{23}L_{23} + P_{24}L_{24} + P_{25}L_{25} +{} \\
  & P_{31}L_{31} + P_{32}L_{32} + P_{33}L_{33} + P_{34}L_{34} + P_{35}L_{35} +{} \\
  & P_{41}L_{41} + P_{42}L_{42} + P_{43}L_{43} + P_{44}L_{44} + P_{45}L_{45} +{} \\
  & P_{51}L_{51} + P_{52}L_{52} + P_{53}L_{53} + P_{54}L_{54} + P_{55}L_{55}
\end{split}
\end{equation}
\begin{equation}
\begin{split}
CTS ={}& P_{11}L_{11} + P_{12}L_{12} + P_{13}L_{13} + P_{14}L_{14} + P_{15}L_{15}\\
  {}+{}& P_{21}L_{21} + P_{22}L_{22} + P_{23}L_{23} + P_{24}L_{24} + P_{25}L_{25}\\
  {}+{}& P_{31}L_{31} + P_{32}L_{32} + P_{33}L_{33} + P_{34}L_{34} + P_{35}L_{35}\\
  {}+{}& P_{41}L_{41} + P_{42}L_{42} + P_{43}L_{43} + P_{44}L_{44} + P_{45}L_{45}\\
  {}+{}& P_{51}L_{51} + P_{52}L_{52} + P_{53}L_{53} + P_{54}L_{54} + P_{55}L_{55}
\end{split}
\end{equation}
\end{document}

在此处输入图片描述

答案2

您可以使用&对齐不同行中的项目

\begin{equation}\label{eq.7}
\begin{split}
CTS = 
{P_1}_1 \cdot {L_1}_1 &+ {P_1}_2 \cdot {L_1}_2 + {P_1}_3 \cdot {L_1}_3+{P_1}_4
  \cdot {L_1}_4+{P_1}_5 \cdot {L_1}_5 +\\
{P_2}_1 \cdot {L_2}_1 &+ {P_2}_2 \cdot {L_2}_2 + {P_2}_3 \cdot {L_2}_3+{P_2}_4
  \cdot {L_2}_4+{P_2}_5 \cdot {L_2}_5+\\
{P_3}_1 \cdot {L_3}_1 &+{P_3}_2 \cdot {L_3}_2 + {P_3}_3 \cdot {L_3}_3+{P_3}_4
  \cdot {L_3}_4+{P_3}_5 \cdot {L_3}_5+\\
{P_4}_1 \cdot {L_4}_1 &+ {P_4}_2 \cdot {L_4}_2 + {P_4}_3 \cdot {L_4}_3+{P_4}_4
  \cdot {L_4}_4+{P_4}_5 \cdot {L_4}_5+\\
{P_5}_1 \cdot {L_5}_1 &+ {P_5}_2 \cdot {L_5}_2 + {P_5}_3 \cdot {L_5}_3+{P_5}_4
  \cdot {L_5}_4+{P_5}_5 \cdot {L_5}_5
\end{split}
\end{equation}

答案3

使用\phantom

\cdot {L_5}_4+{P_5}_5 \cdot {L_5}_5\phantom{+}\\

相关内容