我想更改\newtheorem
投影机上方和下方的空间。我尝试使用\newtheoremstyle
,但没有任何反应。下面是一个例子,显示上方空间设置为 3000pt,但没有任何效果。我如何才能最好地实现我想要的效果?
\documentclass[12pt, aspectratio=169, noamssymb]{beamer}
\usetheme{default}
\setbeamertemplate{navigation symbols}{}
\usepackage[T1]{fontenc}
\setbeamercolor{background canvas}{bg=black}
\setbeamercolor{normal text}{fg=white}
\usepackage[utf8]{inputenc}
\usepackage[norsk]{babel}
\usepackage{amsmath}
\newtheoremstyle{newstyle}
{3000pt} % ABOVESPACE
{3000pt} % BELOWSPACE
{\normalfont} % BODYFONT
{0pt} % INDENT (empty value is the same as 0pt)
{\bfseries} % HEADFONT
{.} % HEADPUNCT
{5pt plus 1pt minus 1pt} % HEADSPACE
{} % CUSTOM-HEAD-SPEC
\theoremstyle{newstyle}
\newtheorem{teorem}{\normalsize \color{white} \bfseries Teorem}
\newtheorem{korollar}{\normalsize \color{white} \bfseries Korollar}
\begin{document}
\begin{frame}
\begin{teorem}[Skjæringssetningen]
La $X$ være et koblet og $Y$ er en ordnet mengde i ordentopologien. La $f: X \to Y$ være kontinuerlig. Hvis $a,b \in X$ og $r \in Y$ slik at $f(a) <r < f(b)$, da eksisterer $c \in X$ slik at $f(c) = r$.
\end{teorem}
\begin{korollar}
Anta at $f:[a,b] \to R$ er kontinuerlig og $r \in R$ slik at $f(a) <r < f(b)$, da eksisterer $c \in [a,b]$ slik at $f(c) = r$.
\end{korollar}
\end{frame}
\end{document}
答案1
Beamer 将所有newtheorem
s 视为自己的定理环境,因此如果您想调整间距,只需将其添加到相关的 beamer 模板中:
\documentclass[12pt, aspectratio=169, noamssymb]{beamer}
\usetheme{default}
\setbeamertemplate{navigation symbols}{}
\usepackage[T1]{fontenc}
\setbeamercolor{background canvas}{bg=black}
\setbeamercolor{normal text}{fg=white}
\usepackage[utf8]{inputenc}
\usepackage[norsk]{babel}
\usepackage{amsmath}
\newtheoremstyle{newstyle}
{3000pt} % ABOVESPACE
{3000pt} % BELOWSPACE
{\normalfont} % BODYFONT
{0pt} % INDENT (empty value is the same as 0pt)
{\bfseries} % HEADFONT
{.} % HEADPUNCT
{5pt plus 1pt minus 1pt} % HEADSPACE
{} % CUSTOM-HEAD-SPEC
\theoremstyle{newstyle}
\newtheorem{teorem}{\normalsize \color{white} \bfseries Teorem}
\newtheorem{korollar}{\normalsize \color{white} \bfseries Korollar}
\usepackage{etoolbox}
\addtobeamertemplate{theorem begin}{%
\vspace{0.5cm}
}
\addtobeamertemplate{theorem end}{%
\vspace{0,5cm}
}
\begin{document}
\begin{frame}
\begin{teorem}[Skjæringssetningen]
La $X$ være et koblet og $Y$ er en ordnet mengde i ordentopologien. La $f: X \to Y$ være kontinuerlig. Hvis $a,b \in X$ og $r \in Y$ slik at $f(a) <r < f(b)$, da eksisterer $c \in X$ slik at $f(c) = r$.
\end{teorem}
\begin{korollar}
Anta at $f:[a,b] \to R$ er kontinuerlig og $r \in R$ slik at $f(a) <r < f(b)$, da eksisterer $c \in [a,b]$ slik at $f(c) = r$.
\end{korollar}
\end{frame}
\end{document}