我想要从下面的代码生成的表格如下:
线与线之间的间距,以及颜色框。该表摘自 Dean Banerjee 所著的《PLL 性能、仿真和设计》一书。
这是我的代码:
\documentclass{article}
\usepackage[english]{babel}
\usepackage{amsmath,amsfonts,amssymb,amsthm, bm}
\begin{document}
\begin{center}
\begin{tabular}{ | c | c | c | c | c |}
\hline
$\rightarrow$ Converting To & Integrated & Signal to Noise & RMS Phase & RMS Jitter\\
$\downarrow$ Converting From & Phase Noise & Ratio & Summary & $(\sigma_{t}$) \\
& (A) & (SNR) & $(\sigma_{\phi(deg)})$ & \\ \hline
A & & 1/A & $\dfrac{180}{\pi}\sqrt{A}$ & $\dfrac{1}{2\pi f}\sqrt{A}$\\ \hline
SNR & 1/SNR & & $\dfrac{180}{\pi\sqrt{SNR}}$ & $\dfrac{1}{2\pi f \sqrt{SNR}}$\\ \hline
$(\sigma_{\phi(deg)})$ & $\left( \dfrac{\pi\cdot\sigma_{\phi(deg)}}{180} \right)^{2}$ & $\left( \dfrac{180}{\pi\cdot\sigma_{\phi(deg)}} \right)^{2}$ & & $\dfrac{1}{f}\dfrac{\sigma_{\phi(deg)}}{360}$ \\ \hline
$\sigma_{t}$ & $\left(2\pi f \cdot \sigma_{t}\right)^{2}$ & $\left( \dfrac{1}{2\pi f \cdot \sigma_{t}}\right)$ & $360\cdot f \cdot \sigma_{t}$ & \\ \hline
\end{tabular}
\end{center}
\end{document}
答案1
像这样:
对于上面的图片,我仅添加到您的 MWE\usepackage[table]{xcolor}
并在对角线单元格中输入\cellcolor{gray!10}
:
\documentclass{article}
\usepackage[english]{babel}
\usepackage[table]{xcolor}% <-- added
\usepackage{amsmath,amssymb,amsthm, bm}
\begin{document}
\begin{center}
\begin{tabular}{ | c | c | c | c | c |}
\hline
$\rightarrow$ Converting To & Integrated & Signal to Noise & RMS Phase & RMS Jitter\\
$\downarrow$ Converting From & Phase Noise & Ratio & Summary & $(\sigma_{t}$) \\
& (A) & (SNR) & $(\sigma_{\phi(deg)})$ & \\ \hline
A & \cellcolor{gray!10}% <-- added
& 1/A
& $\dfrac{180}{\pi}\sqrt{A}$
& $\dfrac{1}{2\pi f}\sqrt{A}$
\\ \hline
SNR & 1/SNR
& \cellcolor{gray!10}% <-- added
& $\dfrac{180}{\pi\sqrt{SNR}}$
& $\dfrac{1}{2\pi f \sqrt{SNR}}$
\\ \hline
$(\sigma_{\phi(deg)})$
& $\left( \dfrac{\pi\cdot\sigma_{\phi(deg)}}{180} \right)^{2}$
& $\left( \dfrac{180}{\pi\cdot\sigma_{\phi(deg)}} \right)^{2}$
& \cellcolor{gray!10}% <-- added
& $\dfrac{1}{f}\dfrac{\sigma_{\phi(deg)}}{360}$
\\ \hline
$\sigma_{t}$
& $\left(2\pi f \cdot \sigma_{t}\right)^{2}$
& $\left( \dfrac{1}{2\pi f \cdot \sigma_{t}}\right)$
& $360\cdot f \cdot \sigma_{t}$
& \cellcolor{gray!10}% <-- added
\\ \hline
\end{tabular}
\end{center}
\end{document}
附录:为了使你的表格看起来更好,需要付出额外的努力。Bernard 给出了一个示例答案,下面是另一种可能性,不需要额外的包:
\documentclass{article}
\usepackage[english]{babel}
\usepackage[table]{xcolor}% <-- added
\usepackage{amsmath,amssymb,amsthm, bm}
\usepackage{makecell}
\renewcommand\theadfont{\bfseries\normalsize}
\begin{document}
\begin{center}
\begin{tabular}{|*{5}{@{\rule[-4ex]{0pt}{9ex}\hspace{6pt}}c|}}%
\hline
\thead{$\to$ Converting To\\
$\downarrow$ Converting From}
& \thead{Integrated\\Phase Noise\\ $(A)$}
& \thead{Signal to\\ Noise Ratio\\ $(SNR)$}
& \thead{RMS Phase\\ Summary\\ $(\sigma_{t})$}
& \thead{RMS Jitter\\ $(\sigma_{\phi(deg)})$}
\\ \hline
$A$ & \cellcolor{gray!10}{}% <-- added
& $1/A$
& $\dfrac{180}{\pi}\sqrt{A}$
& $\dfrac{1}{2\pi f}\sqrt{A}$
\\ \hline
$SNR$ & $1/SNR$
& \cellcolor{gray!10}% <-- added
& $\dfrac{180}{\pi\sqrt{SNR}}$
& $\dfrac{1}{2\pi f \sqrt{SNR}}$
\\ \hline
$(\sigma_{\phi(deg)})$
& $\left( \dfrac{\pi\cdot\sigma_{\phi(deg)}}{180} \right)^{2}$
& $\left( \dfrac{180}{\pi\cdot\sigma_{\phi(deg)}} \right)^{2}$
& \cellcolor{gray!10}% <-- added
& $\dfrac{1}{f}\dfrac{\sigma_{\phi(deg)}}{360}$
\\ \hline
$\sigma_{t}$
& $\left(2\pi f \cdot \sigma_{t}\right)^{2}$
& $\left( \dfrac{1}{2\pi f \cdot \sigma_{t}}\right)$
& $360\cdot f \cdot \sigma_{t}$
& \cellcolor{gray!10}% <-- added
\\ \hline
\end{tabular}
\end{center}
\end{document}
使@{\rule[-4ex]{0pt}{9ex}\hspace{6pt}
所有单元格相等且具有足够的高度:
答案2
带有包的解决方案makecell
(允许换行和单元格中的常见格式和对齐方式),cellspace
(确保列中的单元格与上下单元格之间的垂直填充最小)和colortbl
。我还变成了deg
数学运算符\deg
:
\documentclass{article}
\usepackage[english]{babel}
\usepackage{amsmath,amsfonts,amssymb,amsthm, bm}
\usepackage{array, makecell, colortbl,cellspace }
\usepackage[x11names, table]{xcolor}
\renewcommand{\theadfont}{\normalsize\bfseries\boldmath}
\setlength\cellspacetoplimit{4pt}
\setlength\cellspacebottomlimit{4pt}
\begin{document}
\begin{center}
\begin{tabular}{ | *{5} {Sc |}}
\hline
\thead{\itshape$\rightarrow$ Converting To\\[1.5ex]\itshape$\downarrow$ Converting From} & \thead{Integrated\\Phase Noise\\(A)} & \thead{Signal to Noise\\Ratio\\(SNR)} & \thead{RMS Phase\\Summary\\$(\sigma_{\phi(\deg)})$} & \thead{RMS Jitter\\ $(\sigma_{t}$)}\\
\hline
A & \cellcolor{Snow2}& 1/A & $\dfrac{180}{\pi}\sqrt{A}$ & $\dfrac{1}{2\pi f}\sqrt{A}$\\ \hline
SNR & 1/SNR & \cellcolor{Snow2} & $\dfrac{180}{\pi\sqrt{SNR}}$ & $\dfrac{1}{2\pi f \sqrt{SNR}}$\\
\hline
$(\sigma_{\phi(\deg)})$ & $\left( \dfrac{\pi\cdot\sigma_{\phi(\deg)}}{180} \right)^{2}$ & $\left( \dfrac{180}{\pi\cdot\sigma_{\phi(\deg)}} \right)^{2}$ & \cellcolor{Snow2} & $\dfrac{1}{f}\dfrac{\sigma_{\phi(\deg)}}{360}$ \\
\hline
$\sigma_{t}$ & $\left(2\pi f \cdot \sigma_{t}\right)^{2}$ & $\left( \dfrac{1}{2\pi f \cdot \sigma_{t}}\right)$ & $360\cdot f \cdot \sigma_{t}$ & \cellcolor{Snow2} \\
\hline
\end{tabular}
\end{center}
\end{document}