您能帮我将文本移近左边吗,例如:
\documentclass[11pt,fleqn]{book}
\usepackage{amsmath,amsfonts,amssymb,amsthm}
\begin{document}
\noindent
where
\begin{flalign*}
&\Delta f_{res} & - & \mbox{\emph{lock time in microseconds}}&&\\
&\mathcal{L} & - & \mbox{\emph{is the loop bandwidth in kHz, and}}&&\\
&f_{m} & - & \frac{Frequency~Tolerance}{Frequency~Jump}&&
\end{flalign*}
\end{document}
谢谢,
答案1
这是一种不会被滥用的可能性flalign
:
\documentclass{book}
\usepackage{amsmath,siunitx}
\begin{document}
\noindent
where
\[
\makebox[\displaywidth][l]{$\displaystyle
\begin{array}{@{} l l @{}}
\Delta f_{\mathrm{res}} & \mbox{---\quad \emph{lock time in microseconds,}} \\
\mathcal{L} & \mbox{---\quad \emph{loop bandwidth in \si{kHz}, and}} \\
f_{m} & \mbox{---\quad}\dfrac{\text{\emph{Frequency Tolerance}}}
{\text{\emph{Frequency Jump}}.}
\end{array}
$}
\]
\end{document}
答案2
这是更新后的代码:
\documentclass[11pt,fleqn]{book}
\usepackage{amsmath,amsfonts,amssymb,amsthm}
\begin{document}
\noindent
where
\begin{flalign*}
&\Delta f_{res} & \hspace{-1.6cm} - & \mbox{\emph{lock time in microseconds}}&&\\
&\mathcal{L} & \hspace{-2.1cm} - & \mbox{\emph{is the loop bandwidth in kHz, and}}&&\\
&f_{m} & \hspace{-2cm} - & \frac{Frequency~Tolerance}{Frequency~Jump}&&
\end{flalign*}
\end{document}
答案3
那这个呢,看起来更加好看。
\documentclass[11pt,fleqn]{book}
\usepackage{amsmath,amsfonts,amssymb,amsthm}
\begin{document}
\noindent
where
\begin{flalign*}
&\Delta f_{res} & \hspace{-1.6cm}{:~} & \mbox{\emph{lock time in microseconds}}&&\\
&\mathcal{L} & \hspace{-2.1cm}{:~} & \mbox{\emph{is the loop bandwidth in kHz, and}}&&\\
&f_{m} & \hspace{-2cm}{:~} & \frac{Frequency~Tolerance}{Frequency~Jump}&&
\end{flalign*}
\end{document}
答案4
您可以使用左对齐tabular
环境来实现您的目标。(以下屏幕截图左侧边缘的线条用于说明文本块的边缘。)
顺便说一句,我认为没有必要将说明性文本片段渲染为斜体。要以直立文本字体渲染材料,只需删除\em
下面代码中的指令,然后替换\textit
为\textrm
。
\documentclass[11pt,fleqn]{book}
\usepackage{amsmath,array}
\usepackage{showframe}
\newcolumntype{L}{>{$}l<{$} }
\begin{document}
\noindent \dots
\noindent where\\[1ex]
\noindent
\begin{tabular}{@{} L @{\quad---\quad} >{\em}l}
\Delta f_{\textit{res}} & lock time in microseconds,\\
\mathcal{L} & loop bandwidth in kHz, and\\[0.5ex]
f_{m} & $\dfrac{\textit{Frequency Tolerance}}{\textit{Frequency Jump}}$\\
\end{tabular}
\end{document}