我试图将方程式放入一个名为的向量中,Fs
我无法在一个 pdf 页面上查看所有方程式
\begin{eqnarray*}
\mathbf{Fs} &\mathbf{=}& \\
&=&T^{-1}\left[
\begin{array}{c}
\omega _{1}\sum_{i=1}^{T}\hat{u}_{i}+2\hat{u}_{1}\sum_{k=1}^{\left(
T-1\right) /2}\omega _{2k}+2\sum_{k=1}^{\left( T-1\right) /2}\left(
\sum_{i=1}^{T-1}\hat{u}_{i+1}\cos \left( \frac{2ki\pi }{T}\right) \right)
\omega _{2k} \\
\omega _{1}\sum_{i=1}^{T}\hat{u}_{i}+2\hat{u}_{1}\sum_{k=1}^{\left(
T-1\right) /2}\omega _{2k}\cos \left( \frac{2k\pi }{T}\right)
+2\sum_{k=1}^{\left( T-1\right) /2}\left[ \omega _{2k}\cos \left( \frac{%
2k\pi }{T}\right) \sum_{i=1}^{T-1}\hat{u}_{i+1}\cos \left( \frac{2ki\pi }{T}%
\right) +\omega _{2k+1}\sin \left( \frac{2k\pi }{T}\right) \sum_{i=1}^{T-1}%
\hat{u}_{i+1}\sin \left( \frac{2ki\pi }{T}\right) \right] \\
\omega _{1}\sum_{i=1}^{T}\hat{u}_{i}+2\hat{u}_{1}\sum_{k=1}^{\left(
T-1\right) /2}\omega _{2k}\cos \left( \frac{4k\pi }{T}\right)
+2\sum_{k=1}^{\left( T-1\right) /2}\left[ \omega _{2k}\cos \left( \frac{%
4k\pi }{T}\right) \sum_{i=1}^{T-1}\hat{u}_{i+1}\cos \left( \frac{2ki\pi }{T}%
\right) +\omega _{2k+1}\sin \left( \frac{4k\pi }{T}\right) \sum_{i=1}^{T-1}%
\hat{u}_{i+1}\sin \left( \frac{2ki\pi }{T}\right) \right] \\
\vdots \\
\omega _{1}\sum_{i=1}^{T}\hat{u}_{i}+2\hat{u}_{1}\sum_{k=1}^{\left(
T-1\right) /2}\omega _{2k}\cos \left( \frac{2k\left( T-1\right) \pi }{T}%
\right) +2\sum_{k=1}^{\left( T-1\right) /2}\left[ \omega _{2k}\cos \left(
\frac{2k\left( T-1\right) \pi }{T}\right) \sum_{i=1}^{T-1}\hat{u}_{i+1}\cos
\left( \frac{2ki\pi }{T}\right) +\omega _{2k+1}\sin \left( \frac{2k\left(
T-1\right) \pi }{T}\right) \sum_{i=1}^{T-1}\hat{u}_{i+1}\sin \left( \frac{%
2ki\pi }{T}\right) \right]
\end{array}%
\right]
\end{eqnarray*}
答案1
如果您使用\mfrac
命令、from nccmath
(中等大小的分数,~80% 的显示样式)、\smashoperator
frommathtools
和aligned
最长行的环境,它甚至可以全部放在一行上。
注意nccmath
还有一个medsize
环境和一个\medop
开关。
我将eqnarray*
不再使用的 替换为align*
from amsmath
,并将\left[\begn{array} … \end{array}\right]
构造替换为更简单的\begin{bmatrix} … \end{bmatrix}
。
\documentclass{article}
\usepackage[utf8]{inputenc}
\usepackage{fourier, heuristica}
\usepackage[showframe]{geometry}
\usepackage{array, mathtools,bm, nccmath}
\begin{document}
\begin{align*}
\MoveEqLeft
\\
\bm{Fs=}T^{-1}
& \begin{bmatrix}%{c }
\omega _{1}\sum\limits_{i=1}^{T}\hat{u}_{i}+2\hat{u}_{1}\!\!\smashoperator[r]{\sum\limits_{k=1}^{\left(
T-1\right) /2}}\omega _{2k}+2\!\!\sum\limits_{k=1}^{\left( T-1\right) /2}\left(
\sum\limits_{i=1}^{T-1}\hat{u}_{i+1}\cos \left( \mfrac{2ki\pi }{T}\right) \right)
\omega _{2k} \\[3.5ex]
%
\begin{aligned}\omega _{1}\sum_{i=1}^{T}\hat{u}_{i}+2\hat{u}_{1}\!\!\!\smashoperator[r]{\sum\limits_{k=1}^{\left(
T-1\right) /2}}\omega _{2k}\cos \left( \mfrac{2k\pi }{T}\right)
+2\!\!\sum_{k=1}^{\left( T-1\right) /2}\Biggl[ \omega _{2k}\cos \left( \mfrac{2k\pi }{T}\right) & \sum_{i=1}^{T-1}\hat{u}_{i+1}\cos \left( \mfrac{2ki\pi }{T}\right) \\
{} + {} \omega _{2k+1}\sin \left( \mfrac{2k\pi }{T}\right) & \sum_{i=1}^{T-1}%
\hat{u}_{i+1}\sin \left( \mfrac{2ki\pi }{T}\right) \Biggr]
\end{aligned}\\[5ex]
%
\begin{aligned}
\omega _{1}\sum_{i=1}^{T}\hat{u}_{i}+2\hat{u}_{1}\!\!\!\smashoperator[r]{\sum_{k=1}^{\left(
T-1\right) /2}}\omega _{2k}\cos \left( \mfrac{4k\pi }{T}\right)
+2\!\!\sum_{k=1}^{\left( T-1\right) /2}\biggl[ \omega _{2k}\cos \left( \mfrac{%
4k\pi }{T}\right) & \sum_{i=1}^{T-1}\hat{u}_{i+1}\cos \left( \mfrac{2ki\pi }{T}%
\right) \\
{}+{}\omega _{2k+1}\sin \left( \mfrac{4k\pi }{T}\right) & \sum_{i=1}^{T-1}%
\hat{u}_{i+1}\sin \left( \mfrac{2ki\pi }{T}\right) \Biggr] \\
\end{aligned}\\[-2ex]
%
\vdots \\[-1.5ex]
\vdots \\
%
\begin{aligned}
\omega _{1}\sum_{i=1}^{T}\hat{u}_{i}+2\hat{u}_{1}\!\!\!\smashoperator[r]{\sum_{k=1}^{\left(
T-1\right) /2}}\omega _{2k}\cos \left( \mfrac{2k\left( T-1\right) \pi }{T}%
\right) +2\!\!\sum_{k=1}^{\left( T-1\right) /2}\Biggl[ \omega _{2k}\cos \left(
\mfrac{2k\left( T-1\right) \pi }{T}\right) & \sum_{i=1}^{T-1}\hat{u}_{i+1}\cos
\left( \mfrac{2ki\pi }{T}\right) \\
+\omega _{2k+1}\sin \left( \mfrac{2k\left(
T-1\right) \pi }{T}\right) & \sum_{i=1}^{T-1}\hat{u}_{i+1}\sin \left(\mfrac{%
2ki\pi }{T}\right) \Biggr] \\[0.5ex]
\end{aligned}
\end{bmatrix}%
\end{align*}
\vskip 1cm
{\small\begin{align*}
\bm{Fs=}T^{-1}
&\begin{medsize} \begin{bmatrix}%{c }
\displaystyle\omega _{1}\sum_{i=1}^{T}\hat{u}_{i}+2\hat{u}_{1}\smashoperator[r]{\sum_{k=1}^{
\tfrac{T-1}{2}}}\omega _{2k}+2 \smashoperator[l]{\sum_{k=1}^{\tfrac{T-1}{2}}}\left(
\sum\limits_{i=1}^{T-1}\hat{u}_{i+1}\cos \frac{2ki\pi }{T}\right)
\omega _{2k} \\[3ex]
%
\displaystyle\omega _{1}\sum_{i=1}^{T}\hat{u}_{i}+2\hat{u}_{1}\smashoperator{\sum_{k=1}^{
\tfrac{T-1}{2}}}\omega _{2k}\cos \frac{2k\pi }{T}
+2 \smashoperator[l]{\sum_{k=1}^{\tfrac{T-1}{2}}}\left(\omega _{2k}\cos \frac{2k\pi }{T} \sum_{i=1}^{T-1}\hat{u}_{i+1}\cos \frac{2ki\pi }{T} + \omega _{2k+1}\sin \frac{2k\pi }{T} \sum_{i=1}^{T-1}%
\hat{u}_{i+1}\sin \frac{2ki\pi }{T}\right)
\\[3ex]
\displaystyle\omega _{1}\sum_{i=1}^{T}\hat{u}_{i} + 2\hat{u}_{1}\smashoperator{\sum_{k=1}^{\tfrac{T-1}{2}}} \omega_{2k}\cos \mfrac{4k\pi }{T}
+ 2 \smashoperator[l]{\sum_{k=1}^{\tfrac{T-1}{2}}} \left(\omega _{2k}\cos\mfrac{%
4k\pi }{T} \sum_{i=1}^{T-1}\hat{u}_{i+1}\cos \mfrac{2ki\pi }{T}%
+ \omega _{2k+1}\sin \mfrac{4k\pi }{T} \sum_{i=1}^{T-1}%
\hat{u}_{i+1}\sin \mfrac{2ki\pi }{T}\right) \\
\\[-3ex]
%
\vdots \\[-1.5ex]
\vdots \\[-1.5ex]
%
\displaystyle \omega_{1}\sum_{i=1}^{T}\hat{u}_{i}+2\hat{u}_{1}\smashoperator{\sum_{k=1}^{
\tfrac{T-1}{2}}}\omega _{2k}\cos \frac{2k( T-1) \pi }{T}%
+2\smashoperator[l]{\sum_{k=1}^{ \tfrac{T-1}{2}}} \left(\omega _{2k}\cos \frac{2k( T-1) \pi }{T}
\sum_{i=1}^{T-1}\hat{u}_{i+1}\cos \frac{2ki\pi }{T}
+ \omega_{2k+1}\sin \frac{2k( T-1)\pi}{T} \sum_{i=1}^{T-1}\hat{u}_{i+1}\sin \frac{2ki\pi}{T}\right)\rule[-3.5ex]{0pt}{3ex}
\end{bmatrix}%
\end{medsize}
\end{align*}
}
\end{document}
答案2
如果您希望有人真正阅读并理解该公式,则必须将其拆分:
% arara: pdflatex
\documentclass{article}
\usepackage{mathtools}
\usepackage{upgreek}
\let\pi\uppi
\allowdisplaybreaks
\begin{document}
\begin{align*}
\mathbf{Fs} &= T^{-1}
\begin{bmatrix}
A \\
B \\
C \\
\vdots \\
Z
\end{bmatrix}
\shortintertext{where}
A &= \omega_{1}\sum_{i=1}^{T}\hat{u}_{i} +2\hat{u}_{1} \smashoperator{\sum_{k=1}^{(T-1)/2}}\omega_{2k} + 2 \smashoperator[l]{\sum_{k=1}^{(T-1)/2}} \bigg(\sum_{i=1}^{T-1}\hat{u}_{i+1}\cos\biggl(\frac{2ki\pi }{T}\biggr)\biggr)\omega_{2k} \\
\begin{split}
B &= \omega_{1}\sum_{i=1}^{T}\hat{u}_{i} + 2\hat{u}_{1}\smashoperator{\sum_{k=1}^{(T-1)/2}}\omega_{2k}\cos\biggl(\frac{2k\pi}{T}\biggr) \\
&\qquad+2\smashoperator[l]{\sum_{k=1}^{(T-1)/2}}\Biggl[\omega_{2k}\cos\biggl(\frac{2k\pi}{T}\biggr) \sum_{i=1}^{T-1}\hat{u}_{i+1}\cos\biggl(\frac{2ki\pi}{T}\biggr) \\
&\qquad\hphantom{+2\smashoperator[l]{\sum_{k=1}^{(T-1)/2}}\Biggl[}+ \omega_{2k+1}\sin\biggl(\frac{2k\pi}{T}\biggr) \sum_{i=1}^{T-1}\hat{u}_{i+1}\sin\biggl(\frac{2ki\pi}{T}\biggr)\Biggr]
\end{split}\\
\begin{split}
C &= \omega_{1}\sum_{i=1}^{T}\hat{u}_{i}+2\hat{u}_{1}\smashoperator{\sum_{k=1}^{(T-1)/2}}\omega_{2k}\cos\biggl(\frac{4k\pi}{T}\biggr) \\
&\qquad+2\smashoperator[l]{\sum_{k=1}^{(T-1)/2}}\Biggl[\omega_{2k}\cos\biggl(\frac{4k\pi}{T}\biggr) \sum_{i=1}^{T-1}\hat{u}_{i+1}\cos\biggl(\frac{2ki\pi}{T}\biggr) \\&\qquad\hphantom{+2\smashoperator[l]{\sum_{k=1}^{(T-1)/2}}\Biggl[}+\omega_{2k+1}\sin\biggl(\frac{4k\pi}{T}\biggr)\sum_{i=1}^{T-1}
\hat{u}_{i+1}\sin\biggl(\frac{2ki\pi}{T}\biggr)\Biggr]
\end{split}\\
\begin{split}
Z &= \omega_{1}\sum_{i=1}^{T}\hat{u}_{i} + 2\hat{u}_{1}\smashoperator{\sum_{k=1}^{(T-1)/2}}\omega_{2k}\cos\biggl(\frac{2k(T-1)\pi}{T}\biggr) \\
&\qquad+2\smashoperator[l]{\sum_{k=1}^{(T-1)/2}}\Biggl[\omega_{2k}\cos\biggl(\frac{2k(T-1)\pi}{T}\biggr) \sum_{i=1}^{T-1}\hat{u}_{i+1}\cos\biggl(\frac{2ki\pi}{T}\biggr) \\
&\qquad\hphantom{+2\smashoperator[l]{\sum_{k=1}^{(T-1)/2}}\Biggl[}+\omega_{2k+1}\sin\biggl(\frac{2k(T-1)\pi}{T})\sum_{i=1}^{T-1}\hat{u}_{i+1}\sin\biggl(\frac{2ki\pi}{T}\biggr)\Biggr]
\end{split}
\end{align*}
\end{document}