我想制作一条双曲线,其中包含与两个圆距离相同的点。我对准确性并不感兴趣,而是想要一个能让学生理解的图形。这是我的代码:
\documentclass{article}
\usepackage{amsmath}
\usepackage{tikz}
\begin{document}
\begin{figure}
\centering
\begin{tikzpicture}
\draw (2,2) circle (1cm);
\draw (5,0) .. controls (6,4) and (5,6) .. (3,6);
\draw (10,2) circle (3cm);
\end{tikzpicture}
\caption{All points that are equidistant from both circles, lie on the hyperbola}
\end{figure}
\end{document}
你能帮忙吗?
答案1
下面的示例从下到上逐行扫描图像区域(其中的一部分),以找到X位置,当前点与圆的距离差异最小。可以通过将当前点到圆心的距离减去半径来计算与某个点的距离(如果当前点在圆内,则取绝对值)。
可以使用 TikZ 进行计算,但 TeX 不提供实数的快速计算,因此在这种强力计算的情况下,最好使用不同的编程语言来加快计算速度。
例如,一个 Perl 脚本。在脚本的顶部区域修改参数。它输出适合绘图命令的点列表plot
。
#!/usr/bin/env perl
use strict;
use warnings;
my ($ax, $ay, $ar) = (2, 2, 1);
my ($bx, $by, $br) = (10, 2, 3);
my ($ymin, $ymax) = (-4, 8);
my ($xmin, $xmax) = ($ax, $bx);
my ($xstep, $ystep) = (.01, .01);
sub circledistance ($$$$$) {
my ($radius, $mx, $my, $x, $y) = @_;
my $xdiff = $mx - $x;
my $ydiff = $my - $y;
my $result = sqrt($xdiff * $xdiff + $ydiff * $ydiff) - $radius;
$result = -$result if $result < 0;
return $result;
}
sub round ($) {
my $value = shift;
return int($value + .5);
}
my $xcount = round(($xmax - $xmin)/$xstep);
my $ycount = round(($ymax - $ymin)/$ystep);
my @points;
for (my $yi = 0; $yi <= $ycount; $yi++) {
my $diff = 1000000;
my $point = '';
my $y = $ymin + ($ymax - $ymin)*$yi/$ycount;
for (my $xi = 0; $xi <= $xcount; $xi++) {
my $x = $xmin + ($xmax - $xmin)*$xi/$xcount;
my $a = circledistance($ar, $ax, $ay, $x, $y);
my $b = circledistance($br, $bx, $by, $x, $y);
my $d = $a - $b;
$d = -$d if $d < 0;
if ($d < $diff) {
$diff = $d;
$point = "($x,$y)";
}
}
push @points, $point;
}
print "$_\n" foreach @points;
1;
__END__
然后是 TeX 代码:
\documentclass{article}
\usepackage{amsmath}
\usepackage{tikz}
\begin{document}
\begin{figure}
\centering
\begin{tikzpicture}
\def\AX{2}
\def\AY{2}
\def\AR{1}
\def\BX{10}
\def\BY{2}
\def\BR{3}
\draw (\AX,\AY) circle (\AR cm);
\draw (\BX,\BY) circle (\BR cm);
\draw[red] plot[smooth] coordinates{
(4.16,-4)
(4.16,-3.99)
(4.16,-3.98)
(4.16,-3.97)
(4.16,-3.96)
(4.17,-3.95)
% ... <remaining lines of the output of the Perl script>
};
\end{tikzpicture}
\caption{All points that are equidistant from both circles, lie on the
hyperbola}
\end{figure}
\end{document}
答案2
有点脆弱(即,大数字会破坏它)并且没有考虑圆之间的角度(所以它们是水平的),但大多数情况下它只涉及余弦规则的重新排列。
\documentclass[tikz,border=5]{standalone}
\usetikzlibrary{math}
\begin{document}
\begin{tikzpicture}
\tikzmath{%
integer \i, \j;
\r = 2;
\R = 6;
\c = \r + 4 + \R;
{
\draw (0, 0) circle [radius=\r];
\draw (\c, 0) circle [radius=\R];
};
for \i in {1,...,50}{
\C = 180 - 100 + \i*4;
\Z = (\c^2 - \r^2 - \R^2 + 2 * \r*\R) / (2 * (1 - cos(\C)));
\q = (-(\r+\R) + sqrt((\r+\R)^2 - 4 * (\r*\R - \Z))) / 2;
\a = \q + \r;
\b = \q + \R;
\B = asin(\b * sin(\C) / \c);
{ \coordinate (n-\i) at (\B:\a); };
if (\i > 1) then {
\j = \i - 1;
{ \draw (n-\j) -- (n-\i); };
};
};
}
\end{tikzpicture}
\end{document}
答案3
因此,如果您不关心完美的抛物线,这里有一个简单的解决方案。这全是关于选择合适的控件坐标以及抛物线的端点。绘制辅助网格并在最终运行中将其删除可能对这项任务有用。
\documentclass{article}
\usepackage{amsmath,tikz}
\begin{document}
\begin{figure}
\centering
\begin{tikzpicture}[line width=.7pt, scale=.7]
\draw (2,2) circle (1cm);
\draw (2,-3) .. controls (6,1) and (6,3) .. (2,7);
\draw (10,2) circle (3cm);
\end{tikzpicture}
\caption{All points that are equidistant from both circles, lie on the hyperbola}
\end{figure}
\end{document}
答案4
计算双曲线的解决方案。不太难,我想原帖者知道怎么做。圆之间的半径和距离与最初的例子相同。该图准确且可自定义,但是,买者自负dimension too large
:稍有改动就很容易出错。
下面(以及在 LaTeX 文档中)我将对所涉及的数学添加一些解释。
代码
\documentclass{article}
\usepackage{mathtools} % for the maths part (no needed for the picture)
\usepackage{cancel} % ditto
\usepackage{tikz}
\begin{document}
\begin{figure}[ht]\centering
\begin{tikzpicture}[scale=0.9]
% parameters
\def\ra{1} % radius, left circle
\def\rb{3} % radius, right circle
\def\dc{8} % distance between centers
% maths (explained below)
\pgfmathsetmacro\xa{-0.5*(\dc+\ra-\rb)} % placing the circles at the
\pgfmathsetmacro\xb{ 0.5*(\dc-\ra+\rb)} % same distance form the origin
\pgfmathsetmacro\p{(\xb-\xa)/(\ra-\rb)}
\pgfmathsetmacro\q{(\xa*\xa-\xb*\xb-(\ra-\rb)*(\ra-\rb))/(2*(\ra-\rb))}
\pgfmathsetmacro\k{\p*\q+\xb}
\tikzset{declare function={
fx(\x)=2*\k*cos(\x)*cos(\x)/(1-\p*\p*cos(\x)*cos(\x)); % hyperbola, x=rho(theta)*cos(theta)
fy(\x)=2*\k*sin(\x)*cos(\x)/(1-\p*\p*cos(\x)*cos(\x)); % hyperbola, y=rho(theta)*sin(theta)
dd(\x)=sqrt((fx(\x)-\xa)*(fx(\x)-\xa)+fy(\x)*fy(\x))-\ra; % distance from the hyperbola to A (or B)
}}
% circles
\draw[thick] (\xa,0) coordinate (A) circle (\ra);
\draw[thick] (\xb,0) coordinate (B) circle (\rb);
% hyperbola
\def\d{7} % domain
\draw[red,very thick] plot[domain=90-\d:90+\d] ({fx(\x)},{fy(\x)});
% tangent circles (not in the original picture)
\clip (\xa-2*\ra,{1-fy(90-\d)}) rectangle (\xb+\rb,{-1-fy(90+\d)});
\foreach\i in {-\d,...,\d}
{
\coordinate (aux) at (({fx(90+\i))},{fy(90+\i))});
\draw[gray] (aux) circle ({dd(90+\i)}) \ifnum\i=\d node[black,above] {$P(x,y)$}\fi;
\draw[gray,dashed] (A) -- (aux) -- (B);
\draw[fill=white] (aux) circle (0.5mm);
}
\foreach\i in {A,B}
\draw[fill=white] (\i) circle (0.5mm) node[below] {$\i$};
\end{tikzpicture}
\caption{All points that are equidistant from both circles lie on the hyperbola.}
\end{figure}
% Ignore this if you don't need to know about the maths
\section{The maths}
The circle centers are $A(x_a,0)$, $B(x_b,0)$, and let $P(x,y)$ be a generic point at the hyperbola. Then,
\begin{align*}
d(P,A) & = d(P,B);\\
\sqrt{(x-x_a)^2+y^2}-r_a & =\sqrt{(x-x_b)^2+y^2}-r_b;\\
(x-x_a)^2+\cancel{y^2} & =(x-x_b)^2+\cancel{y^2}+(r_a-r_b)^2+\\
& \phantom{{}={}}+2(r_a-r_b)\sqrt{(x-x_b)^2+y^2};\\
2(x_b-x_a)x+x_a^2-x_b^2+(r_a-r_b)^2 & =2(r_a-r_b)\sqrt{(x-x_b)^2+y^2};\\
\underbrace{\frac{x_b-x_a}{r_a-r_b}}_p x+\underbrace{\frac{x_a^2-x_b^2+(r_a-r_b)^2}{2(r_a-r_b)}}_q & = \sqrt{(x-x_b)^2+y^2};\\
(px+q)^2 & =(x-x_b)^2+y^2;\\
p^2x^2+2pqx+\cancel{q^2} & = x^2+y^2-2x_bx+\cancel{x_b^2};\\
\intertext{If we take the origin equidistant form both circles, we can cancel the constant terms. Now we change to polar coordinates, $x=\rho\cos\theta$, $y=\rho\sin\theta$.}
p^2\rho^2\cos^2\theta+2pq\rho\cos\theta & =\rho^2-2x_b\rho\cos\theta;\\
p^2\rho\cos^2\theta+2pq\cos\theta & =\rho-2x_b\cos\theta;\\
\rho & =\frac{2\overbrace{(pq+x_b)}^k\cos\theta}{1-p^2\cos^2\theta}=\frac{2k\cos\theta}{1-p^2\cos^2\theta}.
\end{align*}
\end{document}
输出
还有数学
圆心为 A(x_a,0)、B(x_b,0),设 P(x,y) 为双曲线上的一个一般点。那么,
如果取原点与两圆等距,就可以取消常数项。现在我们换成极坐标。