数学中的依赖关系

数学中的依赖关系

我试图解释代数表达式的乘法顺序。使用 MWE 和\usepackage{tikz-dependency},我未能得到我想要的结果:

   $\begin{aligned}[t]          
 (a+b)^{2}&=\begin{dependency} [theme = simple]
   \begin{deptext}
      (\&a+\&b)(\&a+\&b)
  \end{deptext}
 \depedge{1}{3}{1}
 \depedge{1}{4}{2}
\depedge{2}{3}{3}
\depedge{2}{4}{4}
 \end{dependency}
  \\&=a^2+ab+ba+b^2
\\&=a^2+2ab+b^2
 \end{aligned} $

答案1

我当然不知道你想要什么,但至少这是有效的:

\documentclass{article}
\usepackage{amsmath,tikz-dependency}

\begin{document}
  \[
\begin{aligned}[t]          
   (a+b)^{2}&=
    \begin{dependency}[theme = simple,baseline=-3pt]
    \begin{deptext}[inner xsep=0pt,column sep=0pt,nodes={inner sep=0pt}]
      $($\&$a$\&${}+{}$\&$b$\&$)($\&$a$\&${}+{}$\&$b$\&$)$ \\
    \end{deptext}
    \depedge{1}{6}{1}
    \depedge{1}{8}{2}
    \depedge{4}{6}{3}
    \depedge{4}{8}{4}
  \end{dependency}
  \\&=a^2+ab+ba+b^2
  \\&=a^2+2ab+b^2
\end{aligned}
\]
\end{document}

在此处输入图片描述

相关内容