答案1
从您发布的截图来看,罪魁祸首是内联数学公式中不恰当的使用\left(
和。构造内部的材料是\right)
\left( ... \right)
绝不跨越界限。永远不能。如果需要放大内联公式的左括号和右括号,请改用\Bigl(
and \Bigr)
。
为了证明这一点,请看下面的截图和相关的 LaTeX 代码。它表明零如果在公式中使用,则可以使用换行符\left( ... \right)
。相反,TeX 会发现四如果\Bigl( ... \Bigr)
使用,可能会出现这种可能性。我让你自己决定应该使用哪种方法。
\documentclass{article}
\usepackage{mathpazo} % looks like you're using a Palatino font
\setlength\textwidth{1mm} % choose an extremely narrow measure
\setlength\parindent{0pt} % just for this example
\begin{document}
\mbox{\emph{With} \texttt{\string\left} and \texttt{\string\right}:
\textbf{zero} linebreak possibilities in the formula}
\medskip
$\left(\omega=\frac{d\theta}{dt}=
\int_0^{\dot{\theta}} d(\dot{\theta});\allowbreak
\omega^2=\int_{0}^{\dot{\theta}}d(\dot{\theta}^2) \right)$
\bigskip
\mbox{\emph{Without} \texttt{\string\left} and \texttt{\string\right}:
\textbf{four} [!] linebreak possibilities}
\medskip
$\Bigl(\omega=\frac{d\theta}{dt}=
\int_0^{\dot{\theta}} d(\dot{\theta});\allowbreak
\omega^2=\int_{0}^{\dot{\theta}}d(\dot{\theta}^2) \Bigr)$
\end{document}
答案2
有问题的文本看起来更像是括号注释,而不是单个公式。我会避免使用大括号(解决方案 A),但可以像解决方案 B 中所示的那样使用大括号。
我喜欢的方式是完全避免使用括号(感谢 Paulo Cereda 对葡萄牙语的帮助)。
\documentclass{article}
\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc}
\usepackage[portuguese]{babel}
\usepackage[a4paper,margin=2cm]{geometry}
\usepackage{newpxtext,newpxmath}
\begin{document}
\subsection{A}
A qual pode ser integrada para ângulos de $\theta_0$ a
$\theta$ enquanto a velocidade angular
($\omega=\frac{d\theta}{dt}=\int_{0}^{\dot{\theta}}d(\dot{\theta})$;
$\omega^2=\int_{0}^{\dot{\theta}}d(\dot{\theta}^{2})$)
varia de $0$ até $\theta$:
\subsection{B}
A qual pode ser integrada para ângulos de $\theta_0$ a
$\theta$ enquanto a velocidade angular
$\Bigl(\omega=\frac{d\theta}{dt}=\int_{0}^{\dot{\theta}}d(\dot{\theta})$;
$\omega^2=\int_{0}^{\dot{\theta}}d(\dot{\theta}^{2})\Bigr)$
varia de $0$ até $\theta$:
\subsection{C}
A qual pode ser integrada para ângulos de $\theta_0$ a
$\theta$ enquanto a velocidade angular, com
$\omega=\frac{d\theta}{dt}=\int_{0}^{\dot{\theta}}d(\dot{\theta})$ e
$\omega^2=\int_{0}^{\dot{\theta}}d(\dot{\theta}^{2})$,
varia de $0$ até $\theta$:
\end{document}